Skip to main content

Vaccine Production: Upstream Processing with Adherent or Suspension Cell Lines

  • Protocol
  • First Online:
Animal Cell Biotechnology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1104))

Abstract

The production of viral vaccines in cell culture can be accomplished with primary, diploid, or continuous (transformed) cell lines. Each cell line, each virus type, and each vaccine preparation require the specific design of upstream and downstream processing. Media have to be selected as well as production vessels, cultivation conditions, and modes of operation. Many viruses only replicate to high titers in adherently growing cells, but similar to processes established for recombinant protein production, an increasing number of suspension cell lines is being evaluated for future use. Here, we describe key issues to be considered for the establishment of large-scale virus production in bioreactors. As an example upstream processing of cell culture-derived influenza virus production is described in more detail for adherently growing and for suspension cells. In particular, use of serum-containing, serum-free, and chemically defined media as well as choice of cultivation vessel are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kaufmann SHE (2004) Novel vaccination strategies. Wiley-VCH, Weinheim

    Book  Google Scholar 

  2. Huang DB, Wu JJ, Tyring SK (2004) A review of licensed viral vaccines, some of their safety concerns, and the advances in the development of investigational viral vaccines. J Infect 49(3):179–209

    Article  Google Scholar 

  3. Aunins JG (2000) Viral vaccine production in cell culture. Encyclopedia of cell technology. Wiley, New York

    Google Scholar 

  4. Feng SZ, Jiao PR, Qi WB et al (2011) Development and strategies of cell-culture technology for influenza vaccine. Appl Microbiol Biotechnol 89(4):893–902

    Article  CAS  Google Scholar 

  5. Tree JA, Richardson C, Fooks AR et al (2001) Comparison of large-scale mammalian cell culture systems with egg culture for the production of influenza virus A vaccine strains. Vaccine 19(25–26):3444–3450

    Article  CAS  Google Scholar 

  6. Robertson JS, Cook P, Attwell AM et al (1995) Replicative advantage in tissue culture of egg-adapted influenza virus over tissue-culture derived virus: implications for vaccine manufacture. Vaccine 13(16):1583–1588

    Article  CAS  Google Scholar 

  7. Govorkova EA, Kodihalli S, Alymova IV et al (1999) Growth and immunogenicity of influenza viruses cultivated in Vero or MDCK cells and in embryonated chicken eggs. Dev Biol Stand 98:39–51, discussion 73–4

    CAS  Google Scholar 

  8. Perdue ML, Arnold F, Li S, Donabedian A et al (2011) The future of cell culture-based influenza vaccine production. Expert Rev Vaccines 10(8):1183–1194

    Article  Google Scholar 

  9. Shaw A (2012) New technologies for new influenza vaccines. Vaccine 30(33): 4927–4933

    Article  CAS  Google Scholar 

  10. Genzel Y, Reichl U (2009) Continuous cell lines as a production system for influenza vaccines. Expert Rev Vaccines 8(12):1681–1692

    Article  CAS  Google Scholar 

  11. Barrett PN, Portsmouth D, Ehrlich HJ (2010) Developing cell culture-derived pandemic vaccines. Curr Opin Mol Ther 12(1):21–30

    CAS  Google Scholar 

  12. Jordan I, Northoff S, Thiele M et al (2011) A chemically defined production process for highly attenuated poxviruses. Biologicals 39(1):508

    Article  Google Scholar 

  13. Lohr V, Genzel Y, Jordan I et al (2012) Live attenuated influenza viruses produced in a suspension process with avian AGE1.CR.pIX cells. BMC Biotechnol 12:79

    Article  CAS  Google Scholar 

  14. Lohr V, Genzel Y, Behrendt I et al (2010) A new MDCK suspension line cultivated in a fully defined medium in stirred-tank and wave bioreactor. Vaccine 28(38):6256–6264

    Article  CAS  Google Scholar 

  15. Schwarzer J, Rapp E, Hennig R et al (2009) Glycan analysis in cell culture-based influenza vaccine production: influence of host cell line and virus strain on the glycosylation pattern of viral hemagglutinin. Vaccine 27(32): 4325–4336

    Article  CAS  Google Scholar 

  16. Genzel Y, Behrendt I, Rodig J et al (2013) CAP, a new human suspension cell line for influenza virus production. Appl Microbiol Biotechnol 97(1):111–122

    Article  CAS  Google Scholar 

  17. Roedig JV, Rapp E, Bohne J et al (2013) Impact of cultivation conditions on N-glycosylation of influenza virus A hemagglutinin produced in MDCK cell culture. Biotechnol Bioeng. doi:10.1002/bit.24834

    Google Scholar 

  18. Hutter J, Rodig JV, Hoper D et al (2013) Toward animal cell culture-based influenza vaccine design: viral hemagglutinin n-glycosylation markedly impacts immunogenicity. J Immunol 190(1):220–230

    Article  Google Scholar 

  19. Bahnemann HG (1990) Inactivation of viral antigens for vaccine preparation with particular reference to the application of binary ethylenimine. Vaccine 8(4):299–303

    Article  CAS  Google Scholar 

  20. Budowsky EI, Zalesskaya MA (1991) Principles of selective inactivation of viral genome. V. Rational selection of conditions for inactivation of the viral suspension infectivity to a given extent by the action of beta-propiolactone. Vaccine 9(5):319–325

    Article  CAS  Google Scholar 

  21. Budowsky EI, Friedman EA, Zheleznova NV et al (1991) Principles of selective inactivation of viral genome. VI. Inactivation of the infectivity of the influenza virus by the action of beta-propiolactone. Vaccine 9(6):398–402

    Article  CAS  Google Scholar 

  22. Mahy BWJ, Kangro HO (1996) Virology methods manual. Academic, London

    Google Scholar 

  23. Kalbfuss B, Knochlein A, Krober T et al (2008) Monitoring influenza virus content in vaccine production: precise assays for the quantitation of hemagglutination and neuraminidase activity. Biologicals 36(3):145–161

    Article  CAS  Google Scholar 

  24. Schwarzer J, Rapp E, Reichl U (2008) N-glycan analysis by CGE-LIF: profiling influenza A virus hemagglutinin N-glycosylation during vaccine production. Electrophoresis 29(20):4203–4214

    Article  CAS  Google Scholar 

  25. Roedig JV, Rapp E, Hoper D et al (2011) Impact of host cell line adaptation on quasispecies composition and glycosylation of influenza A virus hemagglutinin. PLoS One 6(12):e27989

    Article  CAS  Google Scholar 

  26. Smith PK, Krohn RI, Hermanson GT et al (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150(1):76–85

    Article  CAS  Google Scholar 

  27. Rödig JV, Rapp E, Hennig R et al (2009) Optimized CGE-LIF-based glycan analysis for high-throughput applications. In: Jenkins N, Barron N, Alves PM (eds) 21st annual meeting of the European society for animal cell culture technology (ESACT). Springer Science+Business Media BV, Dublin, Ireland, pp 599–603

    Google Scholar 

  28. MHRA (2007) Rules and guidance for pharmaceutical manufacturers and distributors 2007—the ‘Orange Guide’. Pharmaceutical Press, London, UK. ISBN 9-78-085369719-0

    Google Scholar 

  29. European Pharmacopoeia (EP): Maisonneuve S.A., France; continuously updated

    Google Scholar 

  30. United States Pharmacopoeia (USP). Rockville, MD, USA: US Pharmacopoeial Convention; continuously updated

    Google Scholar 

  31. Points to consider in the characterization of cell lines used to produce biologicals: Department of Health and Human Services, Food and Drug Administration; 1993. Report No.: Docket No. 84N-0154

    Google Scholar 

  32. Guidance on viral safety evaluation of biotechnology products derived from cell lines and animal origin: Department of Health and Human Services, Food and Drug Administration; 1998. Report No.: Docket No. 96D-0058

    Google Scholar 

  33. Gregersen J-P (1994) Research and development of vaccines and pharmaceuticals from biotechnology. Wiley-VCH, Weinheim, Germany

    Book  Google Scholar 

  34. Mohler L, Flockerzi D, Sann H et al (2005) Mathematical model of influenza A virus production in large-scale microcarrier culture. Biotechnol Bioeng 90(1):46–58

    Article  Google Scholar 

  35. Genzel Y, Reichl U (2007) Vaccine production: state of the art and future needs. In: Pörtner R (ed) Animal cell biotechnology—methods and protocols, 2nd edn. Humana Press, New York, US, pp 457–474

    Google Scholar 

Download references

Acknowledgments

The authors thank N. Wynserski, C. Best, S. König, and I. Behrendt for their excellent technical assistance. The authors would like to thank I. Jordan (ProBioGen AG) for the fruitful discussions on the AGE1.CR cell line and for allowing us to use this cell line. Equally, the authors thank B. Hundt (IDT Biologika GmbH) for the provision of the egg-derived influenza virus.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Genzel, Y., Rödig, J., Rapp, E., Reichl, U. (2014). Vaccine Production: Upstream Processing with Adherent or Suspension Cell Lines. In: Pörtner, R. (eds) Animal Cell Biotechnology. Methods in Molecular Biology, vol 1104. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-733-4_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-733-4_23

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-732-7

  • Online ISBN: 978-1-62703-733-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics