Skip to main content

ERBB4 Mutation Analysis: Emerging Molecular Target for Melanoma Treatment

  • Protocol
  • First Online:
Molecular Diagnostics for Melanoma

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1102))

Abstract

Recent sequencing efforts in melanoma have elucidated many previously unknown molecular pathways and biological mechanisms involved in melanoma development and progression and have yielded a number of promising targets for molecular therapy. As sequencing technologies have become more sophisticated and have revealed an ever-increasing complexity of the genetic landscape of melanoma, it has become clear that sequencing methods applied to clinical specimens have to reliably capture not only recurrent “hotspot” mutations like BRAFV600 and NRASQ61 or “mini-hotspot” mutations like exon 11 and 13 c-KIT but also heterogeneous somatic mutations dispersed across multiple functionally conserved regions of genes or entire genes. One such example in melanoma is the ERBB4 receptor, or HER4, a member of the Erb receptor family, which has recently been shown to be a major oncogenic “driver” in melanoma. Mutated ERBB4 signaling activates both aberrant ERBB4 and PI3K-AKT signal transduction, mediates sensitivity to small-molecule inhibition with the dual-tyrosine kinase inhibitor lapatinib, and has recently also been implied in oncogenic glutamatergic signaling in melanoma. Mutations involving the ERBB4 gene act as “gain-of-function” mutations and predominantly involve the extracellular domains of the receptor. Additional sequencing efforts have recently identified recurrent mutations (“mini-hotspots”) or mutation clusters which affect the regulation of, e.g., ligand binding, arrangement of extracellular domain alignment, or intramolecular tether formation.

In this chapter, we describe the methods used to determine the mutation status of all exons of the ERBB4 gene in clinical specimens obtained from patients afflicted by metastatic melanoma. Upon slight modifications, this protocol can also be used for mutational analysis of other oncogenes affected by “non-hotspot” mutations dispersed across multiple exons. This sequencing technique has successfully been applied within a clinical trial selecting patients with ERBB4-mutant melanoma for lapatinib treatment. With the increasing emergence of low-frequency oncogenes affected by heterogeneous activating mutations located in different exons and regions this method will provide a mean to translate the promise of recently obtained genetic knowledge into clinical genotype-directed targeted therapy trials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Greenman C et al (2007) Patterns of somatic mutation in human cancer genomes. Nature 446(7132):153–158

    Article  PubMed  CAS  Google Scholar 

  2. Pleasance ED et al (2010) A comprehensive catalogue of somatic mutations from a human cancer genome. Nature 463(7278):191–196

    Article  PubMed  CAS  Google Scholar 

  3. Drobetsky EA, Grosovsky AJ, Glickman BW (1987) The specificity of UV-induced mutations at an endogenous locus in mammalian cells. Proc Natl Acad Sci U S A 84(24):9103–9107

    Article  PubMed  CAS  Google Scholar 

  4. Berger MF et al (2012) Melanoma genome sequencing reveals frequent PREX2 mutations. Nature 485(7399):502–506

    PubMed  CAS  Google Scholar 

  5. Curtin JA et al (2005) Distinct sets of genetic alterations in melanoma. N Engl J Med 353(20):2135–2147

    Article  PubMed  CAS  Google Scholar 

  6. Turajlic S et al (2012) Whole genome sequencing of matched primary and metastatic acral melanomas. Genome Res 22(2):196–207

    Article  PubMed  CAS  Google Scholar 

  7. Walia V et al (2012) Delving into somatic variation in sporadic melanoma. Pigment Cell Melanoma Res 25(2):155–170

    Article  PubMed  CAS  Google Scholar 

  8. Prickett TD et al (2009) Analysis of the tyrosine kinome in melanoma reveals recurrent mutations in ERBB4. Nat Genet 41(10):1127–1132

    Article  PubMed  CAS  Google Scholar 

  9. Mok TS et al (2009) Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Engl J Med 361(10):947–957

    Article  PubMed  CAS  Google Scholar 

  10. Rosell R et al (2009) Screening for epidermal growth factor receptor mutations in lung cancer. N Engl J Med 361(10):958–967

    Article  PubMed  CAS  Google Scholar 

  11. Solomon DA et al (2008) Mutational inactivation of PTPRD in glioblastoma multiforme and malignant melanoma. Cancer Res 68(24):10300–10306

    Article  PubMed  CAS  Google Scholar 

  12. Palavalli LH et al (2009) Analysis of the matrix metalloproteinase family reveals that MMP8 is often mutated in melanoma. Nat Genet 41(5):518–520

    Article  PubMed  CAS  Google Scholar 

  13. Wei X et al (2010) Mutational and functional analysis reveals ADAMTS18 metalloproteinase as a novel driver in melanoma. Mol Cancer Res 8(11):1513–1525

    Article  PubMed  CAS  Google Scholar 

  14. Wei X et al (2011) Analysis of the disintegrin-metalloproteinases family reveals ADAM29 and ADAM7 are often mutated in melanoma. Hum Mutat 32(6):E2148–E2175

    Article  PubMed  CAS  Google Scholar 

  15. Prickett TD et al (2011) Exon capture analysis of G protein-coupled receptors identifies activating mutations in GRM3 in melanoma. Nat Genet 43(11):1119–1126

    Article  PubMed  CAS  Google Scholar 

  16. Prickett TD, Samuels Y (2012) Molecular pathways: dysregulated glutamatergic signaling pathways in cancer. Clin Cancer Res 18(16):4240–4246

    Article  PubMed  CAS  Google Scholar 

  17. Wei X et al (2011) Exome sequencing identifies GRIN2A as frequently mutated in melanoma. Nat Genet 43(5):442–446

    Article  PubMed  CAS  Google Scholar 

  18. Hahn CG et al (2006) Altered neuregulin 1-erbB4 signaling contributes to NMDA receptor hypofunction in schizophrenia. Nat Med 12(7):824–828

    Article  PubMed  CAS  Google Scholar 

  19. Garcia RA, Vasudevan K, Buonanno A (2000) The neuregulin receptor ErbB-4 interacts with PDZ-containing proteins at neuronal synapses. Proc Natl Acad Sci U S A 97(7):3596–3601

    Article  PubMed  CAS  Google Scholar 

  20. Delint-Ramirez I et al (2010) In vivo composition of NMDA receptor signaling complexes differs between membrane subdomains and is modulated by PSD-95 and PSD-93. J Neurosci 30(24):8162–8170

    Article  PubMed  CAS  Google Scholar 

  21. D’Onofrio M et al (2003) Pharmacological blockade of mGlu2/3 metabotropic glutamate receptors reduces cell proliferation in cultured human glioma cells. J Neurochem 84(6):1288–1295

    Article  PubMed  Google Scholar 

  22. Namkoong J et al (2007) Metabotropic glutamate receptor 1 and glutamate signaling in human melanoma. Cancer Res 67(5):2298–2305

    Article  PubMed  CAS  Google Scholar 

  23. Yip D et al (2009) A phase 0 trial of riluzole in patients with resectable stage III and IV melanoma. Clin Cancer Res 15(11):3896–3902

    Article  PubMed  CAS  Google Scholar 

  24. Wood LD et al (2007) The genomic landscapes of human breast and colorectal cancers. Science 318(5853):1108–1113

    Article  PubMed  CAS  Google Scholar 

  25. Fine B et al (2009) Activation of the PI3K pathway in cancer through inhibition of PTEN by exchange factor P-REX2a. Science 325(5945):1261–1265

    Article  PubMed  CAS  Google Scholar 

  26. Colombino M et al (2012) BRAF/NRAS mutation frequencies among primary tumors and metastases in patients with melanoma. J Clin Oncol 30(20):2522–2529

    Article  PubMed  Google Scholar 

  27. Chapman PB et al (2011) Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med 364(26):2507–2516

    Article  PubMed  CAS  Google Scholar 

  28. Flaherty KT et al (2012) Improved survival with MEK inhibition in BRAF-mutated melanoma. N Engl J Med 367(2):107–114

    Article  PubMed  CAS  Google Scholar 

  29. Guo J et al (2011) Phase II, open-label, single-arm trial of imatinib mesylate in patients with metastatic melanoma harboring c-Kit mutation or amplification. J Clin Oncol 29(21):2904–2909

    Article  PubMed  CAS  Google Scholar 

  30. Samuels Y, Waldman T (2010) Oncogenic mutations of PIK3CA in human cancers. Curr Top Microbiol Immunol 347:21–41

    Article  PubMed  CAS  Google Scholar 

  31. Turke AB, Engelman JA (2010) PIKing the right patient. Clin Cancer Res 16(14):3523–3525

    Article  PubMed  CAS  Google Scholar 

  32. Dutton-Regester K et al (2012) A high-throughput panel for identifying clinically relevant mutation profiles in melanoma. Mol Cancer Ther 11(4):888–897

    Article  PubMed  CAS  Google Scholar 

  33. Wagle N et al (2011) Dissecting therapeutic resistance to RAF inhibition in melanoma by tumor genomic profiling. J Clin Oncol 29(22):3085–3096

    Article  PubMed  CAS  Google Scholar 

  34. Molina-Vila MA et al (2009) Screening for EGFR mutations in lung cancer. Discov Med 8(43):181–184

    PubMed  Google Scholar 

  35. Rudloff U, Samuels Y (2010) A growing family: adding mutated Erbb4 as a novel cancer target. Cell Cycle 9(8):1487–1503

    Article  PubMed  CAS  Google Scholar 

  36. Garrett TP et al (2002) Crystal structure of a truncated epidermal growth factor receptor extracellular domain bound to transforming growth factor alpha. Cell 110(6):763–773

    Article  PubMed  CAS  Google Scholar 

  37. Ogiso H et al (2002) Crystal structure of the complex of human epidermal growth factor and receptor extracellular domains. Cell 110(6):775–787

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

Yardena Samuels is supported by the ERC (StG-335377).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Lau, C., Killian, K.J., Samuels, Y., Rudloff, U. (2014). ERBB4 Mutation Analysis: Emerging Molecular Target for Melanoma Treatment. In: Thurin, M., Marincola, F. (eds) Molecular Diagnostics for Melanoma. Methods in Molecular Biology, vol 1102. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-727-3_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-727-3_24

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-726-6

  • Online ISBN: 978-1-62703-727-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics