Skip to main content

Functional Annotation of Differentially Regulated Gene Set Using WebGestalt: A Gene Set Predictive of Response to Ipilimumab in Tumor Biopsies

  • Protocol
  • First Online:
Gene Function Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1101))

Abstract

Most high-throughput methods which are used in molecular biology generate gene lists. Interpreting large gene lists can reveal mechanistic insights and generate useful testable hypotheses. The process can be cumbersome and challenging. Multiple commercial and open solution currently exist that can aid researchers in the functional annotation of gene lists. The process of gene set annotation includes dataset preparation, which is method specific, gene list annotation and analysis and interpretation of the significant associations that were found. In this chapter, we demonstrate how WebGestalt can be applied to gene lists generated from transcriptional profiling data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Huang DW, Sherman BT, Lempicki RA (2009) Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 37(1):1–13 [cited 2012 Sep 9]

    Article  Google Scholar 

  2. Käll L, Vitek O (2011) Computational mass spectrometry-based proteomics. PLoS Comput Biol 7(12):e1002277 [cited 2012 Sep 9]

    Article  PubMed  Google Scholar 

  3. Ji H (2010) Computational analysis of ChIP-seq data [Internet]. In: Ladunga I (ed). Computational biology of transcription factor binding. Humana Press, Totowa, NJ, pp 143–159. http://www.springerlink.com/content/t64851482l360075/abstract/. Accessed Sep 9 2012

  4. Kiefer J, Yin HH, Que QQ, Mousses S (2009) High-throughput siRNA screening as a method of perturbation of biological systems and identification of targeted pathways coupled with compound screening [Internet]. In: Nikolsky Y, Bryant J (eds) Protein networks and pathway analysis. Humana Press, Totowa, NJ, pp 275–287. [cited 2012 Sep 9] Available from: http://www.springerlink.com/content/m710w44457184447/abstract/

  5. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102(43):15545–15550 [cited 2012 Sep 8]

    Article  PubMed  CAS  Google Scholar 

  6. Liberzon A, Subramanian A, Pinchback R, Thorvaldsdóttir H, Tamayo P, Mesirov JP (2011) Molecular signatures database (MSigDB) 3.0. Bioinformatics 27(12):1739–1740 [cited 2012 Sep 9]

    Article  PubMed  CAS  Google Scholar 

  7. Matys V (2006) TRANSFAC(R) and its module TRANSCompel(R): transcriptional gene regulation in eukaryotes. Nucleic Acids Res 34(90001):D108–D110 [cited 2012 Sep 9]

    Google Scholar 

  8. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25(1):25–29 [cited 2012 Sep 9]

    Article  PubMed  CAS  Google Scholar 

  9. Khatri P, Sirota M, Butte AJ (2012) Ten years of pathway analysis: current approaches and outstanding challenges. PLoS Comput Biol 8(2):e1002375 [cited 2012 Sep 8]

    Article  PubMed  CAS  Google Scholar 

  10. Zhang B, Kirov S, Snoddy J (2005) WebGestalt: an integrated system for exploring gene sets in various biological contexts. Nucleic Acids Res 33(Web Server):W741–W748 [cited 2012 Sep 11]

    Article  PubMed  CAS  Google Scholar 

  11. Ji R-R, Chasalow S, Wang L, Hamid O, Schmidt H, Cogswell J, Alaparthy S, Berman D, Jure-Kunkel M, Siemers N, Jackson J, Shahabi V (2012) An immune-active tumor microenvironment favors clinical response to ipilimumab. Cancer Immunol Immunother 61(7):1019–1031 [cited 2012 Sep 11]

    Article  PubMed  CAS  Google Scholar 

  12. Enright AJ, Van Dongen S, Ouzounis CA (2002) An efficient algorithm for large-scale detection of protein families. Nucleic Acids Res 30(7):1575–1584 [cited 2012 Sep 30]

    Article  PubMed  CAS  Google Scholar 

  13. Draghici S (2011) Statistics and data analysis for microarrays using R and bioconductor, 2nd edn. CRC Press, Boca Raton, FL

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Kirov, S., Ji, R., Wang, J., Zhang, B. (2014). Functional Annotation of Differentially Regulated Gene Set Using WebGestalt: A Gene Set Predictive of Response to Ipilimumab in Tumor Biopsies. In: Ochs, M. (eds) Gene Function Analysis. Methods in Molecular Biology, vol 1101. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-721-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-721-1_3

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-720-4

  • Online ISBN: 978-1-62703-721-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics