Skip to main content

De Novo Discovery of Structured ncRNA Motifs in Genomic Sequences

  • Protocol
  • First Online:
RNA Sequence, Structure, and Function: Computational and Bioinformatic Methods

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1097))

Abstract

De novo discovery of “motifs” capturing the commonalities among related noncoding structured RNAs is among the most difficult problems in computational biology. This chapter outlines the challenges presented by this problem, together with some approaches towards solving them, with an emphasis on an approach based on the CMfinder program as a case study. Applications to genomic screens for novel de novo structured ncRNA s, including structured RNA elements in untranslated portions of protein-coding genes, are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yao Z, Weinberg Z, Ruzzo WL (2006) CMfinder—a covariance model based RNA motif finding algorithm. Bioinformatics 22(4):445–452. http://www.ncbi.nlm.nih.gov/pubmed/16357030 PMID:16357030

    Google Scholar 

  2. Yao Z, Barrick J, Weinberg Z, Neph S, Breaker R, Tompa M, Ruzzo WL (2007) A computational pipeline for high-throughput discovery of cis-regulatory noncoding RNA in prokaryotes. PLoS Comput Biol 3(7):e126. http://www.ncbi.nlm.nih.gov/pubmed/17616982 PMID:17616982

    Google Scholar 

  3. Weinberg Z, Barrick JE, Yao Z, Roth A, Kim JN, Gore J, Wang JX, Lee ER, Block KF, Sudarsan N, Neph S, Tompa M, Ruzzo WL, Breaker RR (2007) Identification of 22 candidate structured RNAs in bacteria using the CMfinder comparative genomics pipeline. Nucleic Acids Res 35:4809–4819. http://www.ncbi.nlm.nih.gov/pubmed/17621584 PMID:17621584

    Google Scholar 

  4. Torarinsson E, Yao Z, Wiklund ED, Bramsen JB, Hansen C, Kjems J, Tommerup N, Ruzzo WL, Gorodkin J (2008) Comparative genomics beyond sequence-based alignments: RNA structures in the ENCODE regions. Genome Res 18:242–251. http://www.ncbi.nlm.nih.gov/pubmed/18096747 PMID:18096747

    Google Scholar 

  5. Gorodkin J, Knudsen B (2000) RNA informatik. Naturens Verden 11–12:2–9

    Google Scholar 

  6. Eddy SR (2001) Non-coding RNA genes and the modern RNA world. Nat Rev Genet 2(12):919–929. http://www.ncbi.nlm.nih.gov/pubmed/11733745 PMID:11733745

  7. Eddy SR (2002) Computational genomics of noncoding RNA genes. Cell 109(2):137–140. http://www.ncbi.nlm.nih.gov/pubmed/12007398 PMID:12007398

    Google Scholar 

  8. Bompfünewerer AF, Flamm C, Fried C, Fritzsch G, Hofacker IL, Lehmann J, Missal K, Mosig A, Müller B, Prohaska SJ, Stadler BMR, Stadler PF, Tanzer A, Washietl S, Witwer C (2005) Evolutionary patterns of non-coding RNAs. Theory Biosci 123(4):301–369. http://www.ncbi.nlm.nih.gov/pubmed/18202870 PMID:18202870

    Google Scholar 

  9. Mattick JS, Makunin IV (2006) Non-coding RNA. Hum Mol Genet 15(1):R17–R29. http://www.ncbi.nlm.nih.gov/pubmed/16651366 PMID:16651366

    Google Scholar 

  10. Bompfünewerer AF, Backofen R, Bernhart SH, Flamm C, Fried C, Fritzsch G, Hackermüller J, Hertel J, Hofacker IL, Missal K, Mosig A, Prohaska SJ, Rose D, Stadler PF, Tanzer A, Washietl S, Will S (2007) RNAs everywhere: genome-wide annotation of structured RNAs. J Exp Zoolog B Mol Dev Evol 308:1–25. http://www.ncbi.nlm.nih.gov/pubmed/17171697 PMID:17171697

    Google Scholar 

  11. Gorodkin J, Hofacker IL, Torarinsson E, Yao Z, Havgaard JH, Ruzzo WL (2010) De novo prediction of structured RNAs from genomic sequences. Trends Biotechnol 28:9–19 (Feature Review). http://www.ncbi.nlm.nih.gov/pubmed/19942311 PMID:19942311

    Google Scholar 

  12. Gorodkin J, Hofacker IL (2011) From structure prediction to genomic screens for novel non-coding RNAs. PLoS Comput Biol 7(8):e1002100. http://www.ncbi.nlm.nih.gov/pubmed/21829340 PMID:21829340

  13. Washietl S, Will S, Hendrix DA, Goff LA, Rinn JL, Berger B, Kellis M (2012) Computational analysis of noncoding RNAs. Wiley Interdiscip Rev RNA 3(6):759–778. http://www.ncbi.nlm.nih.gov/pubmed/22991327 PMID:22991327

  14. Pace NR, Thomas BR, Woese CR (1999) Probing RNA structure, function, and history by comparative analysis. In: Gesteland RF, Cech TR, Atkins JF (eds) The RNA world, Chap. 4. Cold Spring Harbor Laboratory, Cold Spring Harbor, pp 113–141

    Google Scholar 

  15. Shang L, Xu W, Ozer S, Gutell RR (2012) Structural constraints identified with covariation analysis in ribosomal RNA. PLoS One 7(6):e39383. http://www.ncbi.nlm.nih.gov/pubmed/22724009 PMID:22724009

  16. Barrick JE, Breaker RR (2007) The distributions, mechanisms, and structures of metabolite-binding riboswitches. Genome Biol 8(11):R239. http://www.ncbi.nlm.nih.gov/pubmed/17997835 PMID:17997835

    Google Scholar 

  17. Zuker M (1989) Computer prediction of RNA structure. Methods Enzymol 180:262–288. http://www.ncbi.nlm.nih.gov/pubmed/2482418 PMID:2482418

  18. Hofacker IL, Fontana W, Stadler PF, Bonhoeffer LS, Tacker M, Schuster P (1994) Fast folding and comparison of RNA secondary structures. Monatshefte für Chemie 125:167–188

    Article  CAS  Google Scholar 

  19. Nawrocki EP, Kolbe DL, Eddy SR (2009) Infernal 1.0: inference of RNA alignments. Bioinformatics 25(10):1335–1337. http://www.ncbi.nlm.nih.gov/pubmed/19307242 PMID:19307242

    Google Scholar 

  20. Durbin R, Eddy SR, Krogh A, Mitchison G (1998) Biological sequence analysis: Probabilistic models of proteins and nucleic acids. Cambridge University Press, Cambridge

    Book  Google Scholar 

  21. Do CB, Batzoglou S (2008) What is the expectation maximization algorithm? Nat Biotechnol 26(8):897–899. http://www.ncbi.nlm.nih.gov/pubmed/18688245 PMID:18688245

    Google Scholar 

  22. Bailey TL, Elkan C (1995) The value of prior knowledge in discovering motifs in MEME. In: Proceedings of the third international conference on intelligent systems for molecular biology. AAAI, Menlo Park, pp 21–29. http://www.ncbi.nlm.nih.gov/pubmed/7584439 PMID:7584439

  23. Eddy SR, Durbin R (1994) RNA sequence analysis using covariance models. Nucleic Acids Res 22(11):2079–2088. http://www.ncbi.nlm.nih.gov/pubmed/8029015 PMID:8029015

  24. Sakakibara Y, Brown M, Hughey R, Mian IS, Sjölander K, Underwood RC, Haussler D (1994) Stochastic context-free grammars for tRNA modeling. Nucleic Acids Res 22(23):5112–5120. http://www.ncbi.nlm.nih.gov/pubmed/7800507 PMID:7800507

    Google Scholar 

  25. Touzet H, Perriquet O (2004) CARNAC: folding families of related RNAs. Nucleic Acids Res 32(Web server issue):W142–W145. http://www.ncbi.nlm.nih.gov/pubmed/15215367 PMID:15215367

  26. Ji Y, Xu X, Stormo GD (2004) A graph theoretical approach for predicting common RNA secondary structure motifs including pseudoknots in unaligned sequences. Bioinformatics 20(10):1591–1602. http://www.ncbi.nlm.nih.gov/pubmed/14962926 PMID:14962926

    Google Scholar 

  27. Sankoff D (1985) Simultaneous solution of the RNA folding, alignment and protosequence problems. SIAM J Appl Math 45:810–825

    Article  Google Scholar 

  28. Gorodkin J, Heyer LJ, Stormo GD (1997) Finding the most significant common sequence and structure motifs in a set of RNA sequences. Nucleic Acids Res 25(18):3724–3732. http://www.ncbi.nlm.nih.gov/pubmed/9278497 PMID:9278497

  29. Mathews DH, Turner DH (2002) Dynalign: an algorithm for finding the secondary structure common to two RNA sequences. J Mol Biol 317(2):191–203. http://www.ncbi.nlm.nih.gov/pubmed/11902836 PMID:11902836

  30. McCaskill JS (1990) The equilibrium partition function and base pair binding probabilities for RNA secondary structure. Biopolymers 29:1105–1119. http://www.ncbi.nlm.nih.gov/pubmed/1695107 PMID:1695107

  31. Hofacker IL, Fekete M, Stadler PF (2002) Secondary structure prediction for aligned RNA sequences. J Mol Biol 319(5):1059–1066. http://www.ncbi.nlm.nih.gov/pubmed/12079347 PMID:12079347

    Google Scholar 

  32. Altschul SF, Erickson BW (1985) Significance of nucleotide sequence alignments: a method for random sequence permutation that preserves dinucleotide and codon usage. Mol Biol Evol 2(6):526–538. http://www.ncbi.nlm.nih.gov/pubmed/3870875 PMID:3870875

  33. Babak T, Blencowe BJ, Hughes TR (2007) Considerations in the identification of functional RNA structural elements in genomic alignments. BMC Bioinformatics 8:33. http://www.ncbi.nlm.nih.gov/pubmed/17263882 PMID:17263882

    Google Scholar 

  34. Gesell T, Washietl S (2008) Dinucleotide controlled null models for comparative RNA gene prediction. BMC Bioinformatics 9:248. http://www.ncbi.nlm.nih.gov/pubmed/18505553 PMID:18505553

  35. Anandam P, Torarinsson E, Ruzzo WL (2009) Multiperm: shuffling multiple sequence alignments while approximately preserving dinucleotide frequencies. Bioinformatics 25:668–669. http://www.ncbi.nlm.nih.gov/pubmed/19136551 PMID:19136551

    Google Scholar 

  36. Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22(21):2688–2690. http://www.ncbi.nlm.nih.gov/pubmed/16928733 PMID:16928733

    Google Scholar 

  37. Gowri-Shankar V, Rattray M (2007) A reversible jump method for Bayesian phylogenetic inference with a nonhomogeneous substitution model. Mol Biol Evol 24(6):1286–1299. http://www.ncbi.nlm.nih.gov/pubmed/17347157 PMID:17347157

    Google Scholar 

  38. Knudsen B, Hein J (1999) RNA secondary structure prediction using stochastic context-free grammars and evolutionary history. Bioinformatics 15(6):446–454. http://www.ncbi.nlm.nih.gov/pubmed/10383470 PMID:10383470

  39. Knudsen B, Hein J (2003) Pfold: RNA secondary structure prediction using stochastic context-free grammars. Nucleic Acids Res 31(13):3423–3428. http://www.ncbi.nlm.nih.gov/pubmed/12824339 PMID:12824339

  40. Pedersen JS, Bejerano G, Siepel A, Rosenbloom K, Lindblad-Toh K, Lander ES, Kent J, Miller W, Haussler D (2006) Identification and classification of conserved RNA secondary structures in the human genome. PLoS Comput Biol 2:e33. http://www.ncbi.nlm.nih.gov/pubmed/16628248 PMID:16628248

  41. Yao Z (2008) Genome scale search of noncoding RNAs: bacteria to vertebrates. Ph.D. thesis, Department of Computer Science and Engineering, University of Washington

    Google Scholar 

  42. Bernhart SHF, Hofacker IL, Will S, Gruber AR, Stadler PF (2008) RNAalifold: improved consensus structure prediction for RNA alignments. BMC Bioinformatics 9:474. http://www.ncbi.nlm.nih.gov/pubmed/19014431 PMID:19014431

    Google Scholar 

  43. Washietl S, Hofacker IL, Stadler PF (2005) Fast and reliable prediction of noncoding RNAs. Proc Natl Acad Sci USA 102:2454–2459. http://www.ncbi.nlm.nih.gov/pubmed/15665081 PMID:15665081

  44. Griffiths-Jones S, Bateman A, Marshall M, Khanna A, Eddy SR (2003) Rfam: an RNA family database. Nucleic Acids Res 31(1):439–441. http://www.ncbi.nlm.nih.gov/pubmed/12520045 PMID:12520045

    Google Scholar 

  45. Griffiths-Jones S, Moxon S, Marshall M, Khanna A, Eddy SR, Bateman A (2005) Rfam: annotating non-coding RNAs in complete genomes. Nucleic Acids Res 33(Database issue):121–124. http://www.ncbi.nlm.nih.gov/pubmed/15608160 PMID:15608160

    Google Scholar 

  46. Gardner PP, Daub J, Tate JG, Nawrocki EP, Kolbe DL, Lindgreen S, Wilkinson AC, Finn RD, Griffiths-Jones S, Eddy SR, Bateman A (2009) Rfam: updates to the RNA families database. Nucleic Acids Res 37(Database issue):D136–D140. http://www.ncbi.nlm.nih.gov/pubmed/18953034 PMID:18953034

  47. Gardner PP, Daub J, Tate J, Moore BL, Osuch IH, Griffiths-Jones S, Finn RD, Nawrocki EP, Kolbe DL, Eddy SR, Bateman A (2011) Rfam: Wikipedia, clans and the “decimal” release. Nucleic Acids Res 39(Database issue):D141–D145. http://www.ncbi.nlm.nih.gov/pubmed/21062808 PMID:21062808

  48. Marchler-Bauer A, Anderson JB, Cherukuri PF, DeWeese-Scott C, Geer LY, Gwadz M, He S, Hurwitz DI, Jackson JD, Ke Z, Lanczycki CJ, Liebert CA, Liu C, Lu F, Marchler GH, Mullokandov M, Shoemaker BA, Simonyan V, Song JS, Thiessen PA, Yamashita RA, Yin JJ, Zhang D, Bryant SH (2005) CDD: a Conserved Domain Database for protein classification. Nucleic Acids Res 33(Database issue):D192–D196. http://www.ncbi.nlm.nih.gov/pubmed/15608175 PMID:15608175

    Google Scholar 

  49. Weinberg Z, Regulski EE, Hammond MC, Barrick JE, Yao Z, Ruzzo WL, Breaker RR (2008) The aptamer core of SAM-IV riboswitches mimics the ligand-binding site of SAM-I riboswitches. RNA 14:822–828. http://www.ncbi.nlm.nih.gov/pubmed/18369181 PMID:18369181

    Google Scholar 

  50. Regulski EE, Moy RH, Weinberg Z, Barrick JE, Yao Z, Ruzzo WL, Breaker RR (2008) A widespread riboswitch candidate that controls bacterial genes involved in molybdenum cofactor and tungsten cofactor metabolism. Mol Microbiol 68:918–932. http://www.ncbi.nlm.nih.gov/pubmed/18363797 PMID: 18363797

    Google Scholar 

  51. Sudarsan N, Lee ER, Weinberg Z, Moy RH, Kim JN, Link KH, Breaker RR (2008) Riboswitches in eubacteria sense the second messenger cyclic di-GMP. Science 321(5887):411–413. http://www.ncbi.nlm.nih.gov/pubmed/18635805 PMID:18635805

    Google Scholar 

  52. Wang JX, Lee ER, Morales DR, Lim J, Breaker RR (2008) Riboswitches that sense S-adenosylhomocysteine and activate genes involved in coenzyme recycling. Mol Cell 29:691–702. http://www.ncbi.nlm.nih.gov/pubmed/18374645 PMID:18374645

    Google Scholar 

  53. Meyer MM, Roth A, Chervin SM, Garcia GA, Breaker RR (2008) Confirmation of a second natural preQ1 aptamer class in Streptococcaceae bacteria. RNA 14:685–695. http://www.ncbi.nlm.nih.gov/pubmed/18305186 PMID:18305186

    Google Scholar 

  54. Weinberg Z, Wang JX, Bogue J, Yang J, Corbino K, Moy RH, Breaker RR (2010) Comparative genomics reveals 104 candidate structured RNAs from bacteria, archaea, and their metagenomes. Genome Biol 11(3):R31. http://www.ncbi.nlm.nih.gov/pubmed/20230605 PMID:20230605

    Google Scholar 

  55. Weinberg Z, Perreault J, Meyer MM, Breaker RR (2009) Exceptional structured noncoding RNAs revealed by bacterial metagenome analysis. Nature 462(7273):656–659. http://www.ncbi.nlm.nih.gov/pubmed/19956260 PMID:19956260

    Google Scholar 

  56. Blanchette M, Kent WJ, Riemer C, Elnitski L, Smit AFA, Roskin KM, Baertsch R, Rosenbloom K, Clawson H, Green ED, Haussler D, Miller W (2004) Aligning multiple genomic sequences with the threaded blockset aligner. Genome Res 14(4):708–715. http://www.ncbi.nlm.nih.gov/pubmed/15060014 PMID:15060014

    Google Scholar 

  57. Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, Haussler D (2002) The human genome browser at UCSC. Genome Res 12(6):996–1006. http://www.ncbi.nlm.nih.gov/pubmed/12045153 PMID:12045153

    Google Scholar 

  58. ENCODE Project Consortium et al (2007) Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447(7146):799–816. http://www.ncbi.nlm.nih.gov/pubmed/17571346 PMID:17571346

    Google Scholar 

  59. Lunter G, Ponting CP, Hein J (2006) Genome-wide identification of human functional DNA using a neutral indel model. PLoS Comput Biol 2(1):e5. http://www.ncbi.nlm.nih.gov/pubmed/16410828 PMID:16410828

    Google Scholar 

  60. Gardner PP, Wilm A, Washietl S (2005) A benchmark of multiple sequence alignment programs upon structural RNAs. Nucleic Acids Res 33(8):2433–2439. http://www.ncbi.nlm.nih.gov/pubmed/15860779 PMID:15860779

    Google Scholar 

  61. Torarinsson E, Sawera M, Havgaard JH, Fredholm M, Gorodkin J (2006) Thousands of corresponding human and mouse genomic regions unalignable in primary sequence contain common RNA structure. Genome Res 16(7):885–889. Erratum: Genome Res 16:1439, 2006. http://www.ncbi.nlm.nih.gov/pubmed/16751343 PMID:16751343

    Google Scholar 

  62. Lu ZJ, Yip KY, Wang G, Shou C, Hillier LW, Khurana E, Agarwal A, Auerbach R, Rozowsky J, Cheng C, Kato M, Miller DM, Slack F, Snyder M, Waterston RH, Reinke V, Gerstein MB (2011) Prediction and characterization of noncoding RNAs in C. elegans by integrating conservation, secondary structure, and high-throughput sequencing and array data. Genome Res 21(2):276–285. http://www.ncbi.nlm.nih.gov/pubmed/21177971 PMID:21177971

    Google Scholar 

  63. Chen XS, Brown CM (2012) Computational identification of new structured cis-regulatory elements in the 3′-untranslated region of human protein coding genes. Nucleic Acids Res 40(18):8862–8873. doi: 10.1093/nar/gks684. http://www.ncbi.nlm.nih.gov/pubmed/22821558 PMID:22821558

  64. Weinberg Z, Ruzzo WL (2004) Faster genome annotation of non-coding RNA families without loss of accuracy. In: RECOMB04: Proceedings of the eighth annual international conference on computational molecular biology. ACM, San Diego, pp 243–251. http://doi.acm.org/10.1145/974614.974647http://doi.acm.org/10.1145/ http://doi.acm.org/10.1145/974614.974647974614.974647

  65. Weinberg Z, Ruzzo WL (2004) Exploiting conserved structure for faster annotation of non-coding RNAs without loss of accuracy. Bioinformatics 20(1):i334–i341. http://www.ncbi.nlm.nih.gov/pubmed/15262817 PMID:15262817

    Google Scholar 

  66. Weinberg Z, Ruzzo WL (2006) Sequence-based heuristics for faster annotation of non-coding RNA families. Bioinformatics 22(1):35–39. http://www.ncbi.nlm.nih.gov/pubmed/16267089 PMID:16267089

    Google Scholar 

  67. Sun Y, Buhler J, Yuan C (2012) Designing filters for fast-known ncRNA identification. IEEE/ACM Trans Comput Biol Bioinformatics 9(3):774–787. http://www.ncbi.nlm.nih.gov/pubmed/22084145 PMID: 22084145

    Google Scholar 

  68. Will S, Reiche K, Hofacker IL, Stadler PF, Backofen R (2007) Inferring noncoding RNA families and classes by means of genome-scale structure-based clustering. PLoS Comput Biol 3(4):e65. http://www.ncbi.nlm.nih.gov/pubmed/17432929 PMID:17432929

    Google Scholar 

  69. Tseng HH, Weinberg Z, Gore J, Breaker RR, Ruzzo WL (2009) Finding non-coding RNAs through genome-scale clustering. J Bioinformatics Comput Biol 7:373–388. http://www.ncbi.nlm.nih.gov/pubmed/19340921 PMID:19340921

    Google Scholar 

  70. Parker BJ, Moltke I, Roth A, Washietl S, Wen J, Kellis M, Breaker R, Pedersen JS (2011) New families of human regulatory RNA structures identified by comparative analysis of vertebrate genomes. Genome Res 21(11):1929–1943. http://www.ncbi.nlm.nih.gov/pubmed/21994249 PMID:21994249

    Google Scholar 

  71. Rivas E, Eddy SR (2001) Noncoding RNA gene detection using comparative sequence analysis. BMC Bioinformatics 2(1):8. ISSN 1471-2105. http://www.ncbi.nlm.nih.gov/pubmed/11801179 PMID:11801179

  72. Rivas E, Klein RJ, Jones TA, Eddy SR (2001) Computational identification of noncoding RNAs in E. coli by comparative genomics. Curr Biol 11(17):1369–1373. http://www.ncbi.nlm.nih.gov/pubmed/11553332 PMID:11553332

    Google Scholar 

  73. McCutcheon JP, Eddy SR (2003) Computational identification of non-coding RNAs in Saccharomyces cerevisiae by comparative genomics. Nucleic Acids Res 31(14):4119–4128. http://www.ncbi.nlm.nih.gov/pubmed/12853629 PMID:12853629

  74. Missal K, Rose D, Stadler PF (2005) Non-coding RNAs in Ciona intestinalis. Bioinformatics 21(2):ii77–ii78. http://www.ncbi.nlm.nih.gov/pubmed/16204130 PMID:16204130

    Google Scholar 

  75. Missal K, Zhu X, Rose D, Deng W, Skogerbø G, Chen R, Stadler PF (2006) Prediction of structured non-coding RNAs in the genomes of the nematodes Caenorhabditis elegans and Caenorhabditis briggsae. J Exp Zoolog B Mol Dev Evol 306(4):379–392. http://www.ncbi.nlm.nih.gov/pubmed/16425273 PMID:16425273

  76. Washietl S, Hofacker IL, Lukasser M, Hüttenhofer A, Stadler PF (2005) Mapping of conserved RNA secondary structures predicts thousands of functional noncoding RNAs in the human genome. Nat Biotechnol 23(11):1383–1390. http://www.ncbi.nlm.nih.gov/pubmed/16273071 PMID:16273071

    Google Scholar 

  77. Washietl S, Pedersen JS, Korbel JO, Stocsits C, Gruber AR, Hackermüller J, Hertel J, Lindemeyer M, Reiche K, Tanzer A, Ucla C, Wyss C, Antonarakis SE, Denoeud F, Lagarde J, Drenkow J, Kapranov P, Gingeras TR, Guigo R, Snyder M, Gerstein MB, Reymond A, Hofacker IL, Stadler PF (2007) Structured RNAs in the ENCODE selected regions of the human genome. Genome Res 17(6):852–864. http://www.ncbi.nlm.nih.gov/pubmed/17568003 PMID:17568003

    Google Scholar 

  78. Uzilov AV, Keegan JM, Mathews DH (2006) Detection of non-coding RNAs on the basis of predicted secondary structure formation free energy change. BMC Bioinformatics 7:173. http://www.ncbi.nlm.nih.gov/pubmed/16566836 PMID:16566836

  79. Havgaard JH, Lyngsø RB, Stormo GD, Gorodkin J (2005) Pairwise local structural alignment of RNA sequences with sequence similarity less than 40%. Bioinformatics 21(9):1815–1824. http://www.ncbi.nlm.nih.gov/pubmed/15657094 PMID:15657094

    Google Scholar 

  80. Havgaard JH, Torarinsson E, Gorodkin J (2007) Fast pairwise structural RNA alignments by pruning of the dynamical programming matrix. PLoS Comput Biol 3:1996–1908. http://www.ncbi.nlm.nih.gov/pubmed/17937495 PMID:17937495

Download references

Acknowledgements

This work is supported by the Danish Council for Independent Research (Technology and Production Sciences), the Danish Council for Strategic Research (Programme Commission on Strategic Growth Technologies), as well as the Danish Center for Scientific Computing.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Ruzzo, W.L., Gorodkin, J. (2014). De Novo Discovery of Structured ncRNA Motifs in Genomic Sequences. In: Gorodkin, J., Ruzzo, W. (eds) RNA Sequence, Structure, and Function: Computational and Bioinformatic Methods. Methods in Molecular Biology, vol 1097. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-709-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-709-9_15

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-708-2

  • Online ISBN: 978-1-62703-709-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics