Skip to main content

Cis-Acting 5’ Hammerhead Ribozyme Optimization for In Vitro Transcription of Highly Structured RNAs

  • Protocol
  • First Online:
RNA Folding

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1086))

Abstract

RNA-mediated biological processes usually require precise definition of 5′ and 3′ ends. RNA ends obtained by in vitro transcription using T7 RNA polymerase are often heterogeneous in length and sequence. An efficient strategy to overcome these drawbacks consists of inserting an RNA with known boundaries in between two ribozymes, usually a 5′ hammerhead and a 3′ hepatitis delta virus ribozymes, that cleave off the desired RNA. In practice, folding of the three RNAs challenges each other, potentially preventing thorough processing. Folding and cleavage of the 5′ hammerhead ribozyme relies on a sequence of nucleotides belonging to the central RNA making it more sensitive than the usual 3′ hepatitis delta virus ribozyme. The intrinsic stability of the central RNA may thus prevent correct processing of the full transcript. Here, we present a method in which incorporation of a full-length hammerhead ribozyme with a specific tertiary interaction prevents alternative folding with the lariat capping GIR1 ribozyme and enables complete cleavage in the course of the transcription. This strategy may be transposable for in vitro transcription of any highly structured RNA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fedor MJ, Uhlenbeck OC (1990) Substrate sequence effects on “hammerhead” RNA catalytic efficiency. Proc Natl Acad Sci USA 87:1668–1672

    Article  PubMed  CAS  Google Scholar 

  2. Khvorova A, Lescoute A, Westhof E et al (2003) Sequence elements outside the hammerhead ribozyme catalytic core enable intracellular activity. Nat Struct Biol 10:708–712

    Article  PubMed  CAS  Google Scholar 

  3. Martick M, Scott WG (2006) Tertiary contacts distant from the active site prime a ribozyme for catalysis. Cell 126:309–320

    Article  PubMed  CAS  Google Scholar 

  4. Pley HW, Flaherty KM, McKay DB (1994) Three-dimensional structure of a hammerhead ribozyme. Nature 372:68–74

    Article  PubMed  CAS  Google Scholar 

  5. Scott WG, Finch JT, Klug A (1995) The crystal structure of an all-RNA hammerhead ribozyme: a proposed mechanism for RNA catalytic cleavage. Cell 81:991–1002

    Article  PubMed  CAS  Google Scholar 

  6. Rupert PB, Ferre-D’Amare AR (2001) Crystal structure of a hairpin ribozyme-inhibitor complex with implications for catalysis. Nature 410:780–786

    Article  PubMed  CAS  Google Scholar 

  7. Lacroix-Labonte J, Girard N, Lemieux S et al (2012) Helix-length compensation studies reveal the adaptability of the VS ribozyme architecture. Nucleic Acids Res 40: 2284–2293

    Article  PubMed  CAS  Google Scholar 

  8. Masquida B, Beckert B, Jossinet F (2010) Exploring RNA structure by integrative molecular modelling. N Biotechnol 27:170–183

    Article  PubMed  CAS  Google Scholar 

  9. Helm M, Brule H, Giege R et al (1999) More mistakes by T7 RNA polymerase at the 5′ ends of in vitro-transcribed RNAs. RNA 5:618–621

    Article  PubMed  CAS  Google Scholar 

  10. Milligan JF, Uhlenbeck OC (1989) Synthesis of small RNAs using T7 RNA polymerase. Methods Enzymol 180:51–62

    Article  PubMed  CAS  Google Scholar 

  11. Solomatin S, Herschlag D (2009) Methods of site-specific labeling of RNA with fluorescent dyes. Methods Enzymol 469:47–68

    Article  PubMed  CAS  Google Scholar 

  12. Beckert B, Masquida B (2011) Synthesis of RNA by in vitro transcription. Methods Mol Biol 703:29–41

    Article  PubMed  CAS  Google Scholar 

  13. Price SR, Ito N, Oubridge C et al (1995) Crystallization of RNA-protein complexes I. Methods for the large-scale preparation of RNA suitable for crystallographic studies. J Mol Biol 249:398–408

    Article  PubMed  CAS  Google Scholar 

  14. Fechter P, Rudinger J, Giege R et al (1998) Ribozyme processed tRNA transcripts with unfriendly internal promoter for T7 RNA polymerase: production and activity. FEBS Lett 436:99–103

    Article  PubMed  CAS  Google Scholar 

  15. Mörl M, Lizano E, Willkomm DK et al (2005) Production of RNAs with homogenous 5′ and 3′ ends. In: Hartmann RK, Bindereif A, Westhof E (eds) Handbook of RNA biochemistry, Wiley VCH Verlag Gmbh & Co, Weinheim, Germany, vol 1. pp 22–35

    Google Scholar 

  16. Ferré-D'Amaré AR, Doudna JA (1996) Use of cis- and trans-ribozymes to remove 5′ and 3′ heterogeneities from milligrams of in vitro transcribed RNA. Nucleic Acids Res 24:977–978

    Article  PubMed  Google Scholar 

  17. Nielsen H, Westhof E, Johansen S (2005) An mRNA is capped by a 2′, 5′ lariat catalyzed by a group I-like ribozyme. Science 309: 1584–1587

    Article  PubMed  CAS  Google Scholar 

  18. Hofacker IL, Fontana W, Stadler PF et al (1994) Fast folding and comparison of RNA secondary structures. Monatshefte für Chemie/Chemical Monthly 125:167–188

    Article  CAS  Google Scholar 

  19. Canny MD, Jucker FM, Kellogg E et al (2004) Fast cleavage kinetics of a natural hammerhead ribozyme. J Am Chem Soc 126: 10848–10849

    Article  PubMed  CAS  Google Scholar 

  20. Ichetovkin IE, Abramochkin G, Shrader TE (1997) Substrate recognition by the leucyl/phenylalanyl-tRNA-protein transferase. Conservation within the enzyme family and localization to the trypsin-resistant domain. J Biol Chem 272:33009–33014

    Article  PubMed  CAS  Google Scholar 

  21. Milligan JF, Groebe DR, Witherell GW et al (1987) Oligoribonucleotide synthesis using T7 RNA polymerase and synthetic DNA templates. Nucleic Acids Res 15:8783–8798

    Article  PubMed  CAS  Google Scholar 

  22. Jossinet F, Ludwig TE, Westhof E (2010) Assemble: an interactive graphical tool to analyze and build RNA architectures at the 2D and 3D levels. Bioinformatics 26:2057–2059

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Centre National de la Recherche Scientifique and the University of Strasbourg through a PhD grant to M.M. We are grateful to Laure Schaeffer for technical assistance.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Meyer, M., Masquida, B. (2014). Cis-Acting 5’ Hammerhead Ribozyme Optimization for In Vitro Transcription of Highly Structured RNAs. In: Waldsich, C. (eds) RNA Folding. Methods in Molecular Biology, vol 1086. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-667-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-667-2_2

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-666-5

  • Online ISBN: 978-1-62703-667-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics