Skip to main content

Assembly of Multi-gene Pathways and Combinatorial Pathway Libraries Through ePathBrick Vectors

  • Protocol
  • First Online:
Synthetic Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1073))

Abstract

As an emerging discipline, synthetic biology is becoming increasingly important to design, construct, and optimize metabolic pathways leading to desired phenotypes such as overproduction of biofuels and pharmaceuticals in genetically tractable organisms. We have recently developed a versatile gene assembly platform ePathBricks supporting the modular assembly of multi-gene pathway components and combinatorial generation of pathway diversities. In this protocol, we will detail the process to assemble a seven gene flavonoid pathway (~9 kb) on one single ePathBrick vector. We will also demonstrate that a three-gene flavonoid pathway can be easily diversified to 54 pathway equivalents differing in pathway configuration and gene order; coupled with high-throughput screening techniques, we envision that this combinatorial strategy would greatly improve our ability to exploit the full potential of microbial cell factories for recombinant metabolite production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cheng AA, Lu TK (2012) Synthetic biology: an emerging engineering discipline. Annu Rev Biomed Eng 14:155–178

    Article  CAS  Google Scholar 

  2. Ellis T, Adie T, Baldwin GS (2011) DNA assembly for synthetic biology: from parts to pathways and beyond. Integr Biol (Camb) 3:109–118

    Article  CAS  Google Scholar 

  3. Xu P, Koffas MAG (2010) Metabolic engineering of Escherichia coli for biofuel production. Biofuels 1:493–504

    Article  CAS  Google Scholar 

  4. Westfall PJ et al (2012) Production of amorphadiene in yeast, and its conversion to dihydroartemisinic acid, precursor to the antimalarial agent artemisinin. Proc Natl Acad Sci USA 109:E111–E118

    Article  CAS  Google Scholar 

  5. Ajikumar PK et al (2010) Isoprenoid pathway optimization for taxol precursor overproduction in Escherichia coli. Science 330:70–74

    Article  CAS  Google Scholar 

  6. Xu P, Ranganathan S et al (2011) Genome-scale metabolic network modeling results in minimal interventions that cooperatively force carbon flux towards malonyl-CoA. Metab Eng 13:578–587

    Article  CAS  Google Scholar 

  7. Li MZ, Elledge SJ (2007) Harnessing homologous recombination in vitro to generate recombinant DNA via SLIC. Nat Methods 4:251–256

    Article  CAS  Google Scholar 

  8. Jeong J-Y et al (2012) One-step sequence- and ligation-independent cloning as a rapid and versatile cloning method for functional genomics studies. Appl Environ Microbiol 78:5440–5443

    Article  CAS  Google Scholar 

  9. Gibson DG et al (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6:343–345

    Article  CAS  Google Scholar 

  10. Schmid-Burgk JL et al (2012) Rapid hierarchical assembly of medium-size DNA cassettes. Nucleic Acids Res 40:e92

    Article  CAS  Google Scholar 

  11. Wang R-Y, Shi Z-Y et al (2012) Cloning large gene clusters from E. coli using in vitro single-strand overlapping annealing. ACS Synth Biol 1:291–295

    Article  CAS  Google Scholar 

  12. Shao Z, Zhao H (2009) DNA assembler, an in vivo genetic method for rapid construction of biochemical pathways. Nucleic Acids Res 37:e16

    Article  Google Scholar 

  13. Wingler LM, Cornish VW (2011) Reiterative recombination for the in vivo assembly of libraries of multigene pathways. Proc Natl Acad Sci USA 108:15135–15140

    Article  Google Scholar 

  14. Gibson DG et al (2010) Creation of a bacterial cell controlled by a chemically synthesized genome. Science 329:52–56

    Article  CAS  Google Scholar 

  15. Noskov VN et al (2012) Assembly of large, high G + C bacterial DNA fragments in yeast. ACS Synth Biol 1:267–273

    Article  CAS  Google Scholar 

  16. Quan J, Tian J (2011) Circular polymerase extension cloning for high-throughput cloning of complex and combinatorial DNA libraries. Nat Protoc 6:242–251

    Article  CAS  Google Scholar 

  17. Hillson NJ, Rosengarten RD, Keasling JD (2011) j5 DNA assembly design automation software. ACS Synth Biol 1:14–21

    Article  Google Scholar 

  18. Xu P, Bhan N, Koffas MAG (2013) Engineering plant metabolism into microbes: from systems biology to synthetic biology. Curr Opin Biotechnol 24:291–299. doi:10.1016/j.copbio.2012.08.010

    Article  CAS  Google Scholar 

  19. Xu P, Vansiri A et al (2012) ePathBrick: a synthetic biology platform for engineering metabolic pathways in E. coli. ACS Synth Biol 1:256–266

    Article  CAS  Google Scholar 

  20. Vick JE et al (2011) Optimized compatible set of BioBrick™ vectors for metabolic pathway engineering. Appl Microbiol Biotechnol 92:1275–1286

    Article  CAS  Google Scholar 

  21. Du L, Villarreal S, Forster AC (2012) Multigene expression in vivo: supremacy of large versus small terminators for T7 RNA polymerase. Biotechnol Bioeng 109:1043–1050

    Article  CAS  Google Scholar 

  22. Norville JE et al (2010) Introduction of customized inserts for s-treamlined assembly and optimization of BioBrick synthetic genetic circuits. J Biol Eng 4:17

    Article  CAS  Google Scholar 

  23. Leonard E, Lim K et al (2007) Engineering central metabolic pathways for high-level flavonoid production in Escherichia coli. Appl Environ Microbiol 73:3877–3886

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Xu, P., Koffas, M.A.G. (2013). Assembly of Multi-gene Pathways and Combinatorial Pathway Libraries Through ePathBrick Vectors. In: Polizzi, K., Kontoravdi, C. (eds) Synthetic Biology. Methods in Molecular Biology, vol 1073. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-625-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-625-2_10

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-624-5

  • Online ISBN: 978-1-62703-625-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics