Skip to main content

The Electrovomeronasogram: Field Potential Recordings in the Mouse Vomeronasal Organ

  • Protocol
  • First Online:
Pheromone Signaling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1068))

Abstract

Mammalian vomeronasal neurons (VSNs) located in the sensory epithelium of the vomeronasal organ (VNO) detect and transduce molecular cues emitted by other individuals and send this information to the olfactory forebrain. The initial steps in the detection of pheromones and other chemosignals by VSNs involve interaction of a ligand with a G protein-coupled receptor and downstream activation of the primary signal transduction cascade, which includes activation of ion channels located in microvilli and the dendritic tip of a VSN. The electrovomeronasogram (EVG) recording technique provides a sensitive means through which ligand-induced activation of populations of VSNs can be recorded from the epithelial surface using an intact, ex vivo preparation of the mouse VNO. We describe methodological aspects of this preparation and the EVG recording technique which, together with single-cell recordings, contributed significantly to our understanding of mammalian vomeronasal function, the identification of pheromonal ligands, and the analysis of mice with targeted deletions in specific signal transduction molecules such as Trpc2, Gαo, V1R, or V2R receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hosoya Y, Yoshida H (1937) Über die bioelektrischen Erscheinungen an der Riechschleimhaut. Jpn J Med Sci III Biophys 5:22–23

    Google Scholar 

  2. Ottoson D (1955) Analysis of the electrical activity of the olfactory epithelium. Acta Physiol Scand Suppl 35:1–83

    Article  PubMed  CAS  Google Scholar 

  3. Inouchi J, Wang D, Jiang XC, Kubie J, Halpern M (1993) Electrophysiological analysis of the nasal chemical senses in garter snakes. Brain Behav Evol 41:171–182

    Article  PubMed  CAS  Google Scholar 

  4. Taniguchi M, Wang D, Halpern M (1998) The characteristics of the electrovomeronasogram: its loss following vomeronasal axotomy in the garter snake. Chem Senses 23:653–659

    Article  PubMed  CAS  Google Scholar 

  5. Müller W (1971) Vergleichende elektrophysiologische untersuchungen an den sinnesepithelien des Jacobsonschen organs und der nase von amphibien (Rana), reptilien (Lacerta) und säugetieren (Mus). Z vergl Physiol 72:370–385

    Article  Google Scholar 

  6. Getchell TV, Shepherd GM (1978) Responses of olfactory receptor cells to step pulses of odour at different concentrations in the salamander. J Physiol 282:521–540

    PubMed  CAS  Google Scholar 

  7. Davis H (1961) Some principles of sensory receptor action. Physiol Rev 41:391–416

    PubMed  CAS  Google Scholar 

  8. Gesteland RC, Lettvin JY, Pitts WH (1965) Chemical transmission in the nose of the frog. J Physiol 181:525–559

    PubMed  CAS  Google Scholar 

  9. Scott JW, Scott-Johnson PE (2002) The electroolfactogram: a review of its history and uses. Microsc Res Tech 58:152–160

    Article  PubMed  Google Scholar 

  10. Chen S, Lane AP, Bock R, Leinders-Zufall T, Zufall F (2000) Blocking adenylyl cyclase inhibits olfactory generator currents induced by “IP(3)-odors”. J Neurophysiol 84:575–580

    PubMed  CAS  Google Scholar 

  11. Munger SD, Lane AP, Zhong H, Leinders-Zufall T, Yau KW, Zufall F, Reed RR (2001) Central role of the CNGA4 channel subunit in Ca2+-calmodulin-dependent odor adaptation. Science 294:2172–2175

    Article  PubMed  CAS  Google Scholar 

  12. Spehr M, Spehr J, Ukhanov K, Kelliher KR, Leinders-Zufall T, Zufall F (2006) Parallel processing of social signals by the mammalian main and accessory olfactory systems. Cell Mol Life Sci 63:1476–1484

    Article  PubMed  CAS  Google Scholar 

  13. Spehr M, Kelliher KR, Li XH, Boehm T, Leinders-Zufall T, Zufall F (2006) Essential role of the main olfactory system in social recognition of major histocompatibility complex peptide ligands. J Neurosci 26:1961–1970

    Article  PubMed  CAS  Google Scholar 

  14. Chamero P, Katsoulidou V, Hendrix P, Bufe B, Roberts R, Matsunami H, Abramowitz J, Birnbaumer L, Zufall F, Leinders-Zufall T (2011) G protein Gαo is essential for vomeronasal function and aggressive behavior in mice. Proc Natl Acad Sci U S A 108:12898–12903

    Article  PubMed  CAS  Google Scholar 

  15. Spehr J, Hagendorf S, Weiss J, Spehr M, Leinders-Zufall T, Zufall F (2009) Ca2+-calmodulin feedback mediates sensory adaptation and inhibits pheromone-sensitive ion channels in the vomeronasal organ. J Neurosci 29:2125–2135

    Article  PubMed  CAS  Google Scholar 

  16. Zufall F, Ukhanov K, Lucas P, Liman ER, Leinders-Zufall T (2005) Neurobiology of TRPC2: from gene to behavior. Pflugers Arch 451:61–71

    Article  PubMed  CAS  Google Scholar 

  17. Leinders-Zufall T, Brennan P, Widmayer P, Chandramani SP, Maul-Pavicic A, Jager M, Li XH, Breer H, Zufall F, Boehm T (2004) MHC class I peptides as chemosensory signals in the vomeronasal organ. Science 306:1033–1037

    Article  PubMed  CAS  Google Scholar 

  18. Del Punta K, Leinders-Zufall T, Rodriguez I, Jukam D, Wysocki CJ, Ogawa S, Zufall F, Mombaerts P (2002) Deficient pheromone responses in mice lacking a cluster of vomeronasal receptor genes. Nature 419:70–74

    Article  PubMed  Google Scholar 

  19. Zufall F, Kelliher KR, Leinders-Zufall T (2002) Pheromone detection by mammalian vomeronasal neurons. Microsc Res Tech 58:251–260

    Article  PubMed  CAS  Google Scholar 

  20. Leypold BG, Yu CR, Leinders-Zufall T, Kim MM, Zufall F, Axel R (2002) Altered sexual and social behaviors in trp2 mutant mice. Proc Natl Acad Sci U S A 99:6376–6381

    Article  PubMed  CAS  Google Scholar 

  21. Leinders-Zufall T, Lane AP, Puche AC, Ma W, Novotny MV, Shipley MT, Zufall F (2000) Ultrasensitive pheromone detection by mammalian vomeronasal neurons. Nature 405:792–796

    Article  PubMed  CAS  Google Scholar 

  22. Tucker D, Shibuya T (1965) A physiologic and pharmacologic study of olfactory receptors. Cold Spring Harb Symp Quant Biol 30:207–215

    Article  PubMed  CAS  Google Scholar 

  23. Silver WL, Caprio J, Blackwell JF, Tucker D (1976) The underwater electro-olfactogram: a tool for the study of the sense of smell of marine fishes. Experientia 32:1216–1217

    Article  PubMed  CAS  Google Scholar 

  24. Haga S, Hattori T, Sato T, Sato K, Matsuda S, Kobayakawa R, Sakano H, Yoshihara Y, Kikusui T, Touhara K (2010) The male mouse pheromone ESP1 enhances female sexual receptive behaviour through a specific vomeronasal receptor. Nature 466:118–122

    Article  PubMed  CAS  Google Scholar 

  25. Kimoto H, Sato K, Nodari F, Haga S, Holy TE, Touhara K (2007) Sex- and strain-specific expression and vomeronasal activity of mouse ESP family peptides. Curr Biol 17:1879–1884

    Article  PubMed  CAS  Google Scholar 

  26. Leinders-Zufall T, Ishii T, Mombaerts P, Zufall F, Boehm T (2009) Structural requirements for the activation of vomeronasal sensory neurons by MHC peptides. Nat Neurosci 12:1551–1558

    Article  PubMed  CAS  Google Scholar 

  27. Riviere S, Challet L, Fluegge D, Spehr M, Rodriguez I (2009) Formyl peptide receptor-like proteins are a novel family of vomeronasal chemosensors. Nature 459:574–577

    Article  PubMed  CAS  Google Scholar 

  28. Leinders-Zufall T (1998) Technique for setting up the perfusion of a recording chamber for physiological studies with cultured and acutely dissociated cells. http://wwwwarneronlinecom/pdf/whitepapers/perfusion_strategiespdf

Download references

Acknowledgements

This work was supported by grants from the Deutsche Forschungsgemeinschaft (to T.L.-Z. and F.Z.) and the Volkswagen Foundation (to T.L.-Z.). T.L.-Z. is a Lichtenberg professor of the Volkswagen Foundation.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Leinders-Zufall, T., Zufall, F. (2013). The Electrovomeronasogram: Field Potential Recordings in the Mouse Vomeronasal Organ. In: Touhara, K. (eds) Pheromone Signaling. Methods in Molecular Biology, vol 1068. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-619-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-619-1_16

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-618-4

  • Online ISBN: 978-1-62703-619-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics