Skip to main content

In Vitro Expansion of Fetal Neural Progenitors as Adherent Cell Lines

  • Protocol
  • First Online:
Neural Progenitor Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1059))

Abstract

In vitro studies of neural progenitors isolated from the developing mouse have provided important insights into intrinsic and extrinsic pathways that control their behavior. However, use of primary cultures or neurospheres established from fetal tissues in cell population-based assays can be compromised by cellular heterogeneity. A complementary approach that addresses this issue is the establishment of adherent clonal neural stem (NS) cell lines. Here I describe protocols and troubleshooting advice for establishing adherent NS cell lines from the mouse fetal forebrain. NS cells grow as pure cultures in defined serum-free conditions as adherent monolayers and are therefore amenable to chemical/genetic screens, biochemical studies, and population-based analysis of gene expression or transcriptional regulation (e.g. RNA-Seq and ChIP-Seq). NS cell lines therefore represent a tractable cellular model system to explore the molecular and cellular biology of neural stem cell self-renewal and differentiation. Similar protocols can be extended to rat and human embryos, as well as human brain tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Davis AA, Temple S (1994) A self-renewing multipotential stem cell in embryonic rat cerebral cortex. Nature 372:263–266

    Article  PubMed  CAS  Google Scholar 

  2. Johe KK et al (1996) Single factors direct the differentiation of stem cells from the fetal and adult central nervous system. Genes Dev 10:3129–3140

    Article  PubMed  CAS  Google Scholar 

  3. Reynolds BA, Weiss S (1992) Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255:1707–1710

    Article  PubMed  CAS  Google Scholar 

  4. Reynolds BA, Tetzlaff W, Weiss S (1992) A multipotent EGF-responsive striatal embryonic progenitor cell produces neurons and astrocytes. J Neurosci 12:4565–4574

    PubMed  CAS  Google Scholar 

  5. Pastrana E, Silva-Vargas V, Doetsch F (2011) Eyes wide open: a critical review of sphere-formation as an assay for stem cells. Cell 8:486–498

    CAS  Google Scholar 

  6. Conti L et al (2005) Niche-independent symmetrical self-renewal of a mammalian tissue stem cell. PLoS Biol 3:e283

    Article  PubMed  Google Scholar 

  7. Ever L, Gaiano N (2005) Radial “glial” progenitors: neurogenesis and signaling. Curr Opin Neurobiol 15:29–33

    Article  PubMed  CAS  Google Scholar 

  8. Pollard SM, Conti L (2007) Investigating radial glia in vitro. Prog Neurobiol 83:53–67

    Article  PubMed  CAS  Google Scholar 

  9. Johnson R et al (2008) REST regulates distinct transcriptional networks in embryonic and neural stem cells. PLoS Biol 6:e256

    Article  PubMed  Google Scholar 

  10. Castro DS et al (2011) A novel function of the proneural factor Ascl1 in progenitor proliferation identified by genome-wide characterization of its targets. Genes Dev 25:930–945

    Article  PubMed  CAS  Google Scholar 

  11. Bernstein BE et al (2006) A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125:315–326

    Article  PubMed  CAS  Google Scholar 

  12. Meissner A et al (2008) Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature 454:766–770

    PubMed  CAS  Google Scholar 

  13. Blelloch R et al (2006) Reprogramming efficiency following somatic cell nuclear transfer is influenced by the differentiation and methylation state of the donor nucleus. Stem Cells 24:2007–2013

    Article  PubMed  CAS  Google Scholar 

  14. Silva J et al (2009) Nanog is the gateway to the pluripotent ground state. Cell 138:722–737

    Article  PubMed  CAS  Google Scholar 

  15. Kim JB et al (2008) Pluripotent stem cells induced from adult neural stem cells by reprogramming with two factors. Nature 454:646–650

    Article  PubMed  CAS  Google Scholar 

  16. Conti L, Cattaneo E (2010) Neural stem cell systems: physiological players or in vitro entities? Nat Rev Neurosci 11:176–187

    Article  PubMed  CAS  Google Scholar 

  17. Hack MA et al (2004) Regionalization and fate specification in neurospheres: the role of Olig2 and Pax6. Mol Cell Neurosci 25:664–678

    Article  PubMed  CAS  Google Scholar 

  18. Gabay L, Lowell S et al (2003) Deregulation of dorsoventral patterning by FGF confers trilineage differentiation capacity on CNS stem cells in vitro. Neuron 40:485–499

    Article  PubMed  CAS  Google Scholar 

  19. Ciccolini F et al (2005) Hellwig, prospective isolation of late development multipotent precursors whose migration is promoted by EGFR. Dev Biol 284:112–125

    Article  PubMed  CAS  Google Scholar 

  20. Pollard SM et al (2008) Fibroblast growth factor induces a neural stem cell phenotype in foetal forebrain progenitors and during embryonic stem cell differentiation. Mol Cell Neurosci 38:393–403

    Article  PubMed  CAS  Google Scholar 

  21. Elkabetz Y et al (2008) Human ES cell-derived neural rosettes reveal a functionally distinct early neural stem cell stage. Genes Dev 22:152–165

    Article  PubMed  CAS  Google Scholar 

  22. Koch P et al (2009) A rosette-type, self-renewing human ES cell-derived neural stem cell with potential for in vitro instruction and synaptic integration. Proc Natl Acad Sci USA 106:3225–3230

    Article  PubMed  CAS  Google Scholar 

  23. Falk A et al (2012) Capture of neuroepithelial-like stem cells from pluripotent stem cells provides a versatile system for in vitro production of human neurons. PLoS One 7:e29597

    Article  PubMed  CAS  Google Scholar 

  24. Pollard SM et al (2006) Adherent neural stem (NS) cells from fetal and adult forebrain. Cereb Cortex 16(Suppl 1):i112–i120

    Article  PubMed  Google Scholar 

  25. Sun Y et al (2008) Long-term tripotent differentiation capacity of human neural stem (NS) cells in adherent culture. Mol Cell Neurosci 38:245–258

    Article  PubMed  CAS  Google Scholar 

  26. Sun Y et al (2011) Interplay between FGF2 and BMP controls the self-renewal, dormancy and differentiation of rat neural stem cells. J Cell Sci 124:1867–1877

    Article  PubMed  CAS  Google Scholar 

  27. Pollard SM et al (2009) Glioma stem cell lines expanded in adherent culture have tumor-specific phenotypes and are suitable for chemical and genetic screens. Cell Stem Cell 4:568–580

    Article  PubMed  CAS  Google Scholar 

  28. Spiliotopoulos D et al (2009) An optimized experimental strategy for efficient conversion of embryonic stem (ES)-derived mouse neural stem (NS) cells into a nearly homogeneous mature neuronal population. Neurobiol Dis 34:320–331

    Article  PubMed  CAS  Google Scholar 

  29. Pollard SM, Benchoua A, Lowell S (2006) Neural stem cells, neurons, and glia. Methods Enzymol 418:151–169

    Article  PubMed  CAS  Google Scholar 

  30. Capela A, Temple S (2006) LeX is expressed by principle progenitor cells in the embryonic nervous system, is secreted into their environment and binds Wnt-1. Dev Biol 291:300–313

    Article  PubMed  CAS  Google Scholar 

  31. Diaferia GR et al (2011) Systematic chromosomal analysis of cultured mouse neural stem cell lines. Stem Cells Dev 20:1411–1423

    Article  PubMed  CAS  Google Scholar 

  32. Glaser T et al (2007) Tripotential differentiation of adherently expandable neural stem (NS) cells. PLoS One 2:e298

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

I thank all members of the Pollard laboratory and Dr. Stefano Bartesaghi for many helpful comments on the manuscript. Ursula Grazini helped in imaging embryos during the dissection procedure. S.M.P. is supported by grants from The Brain Tumour Charity and Cancer Research UK. He holds the Alex Bolt Research Fellowship.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Pollard, S.M. (2013). In Vitro Expansion of Fetal Neural Progenitors as Adherent Cell Lines. In: Reynolds, B., Deleyrolle, L. (eds) Neural Progenitor Cells. Methods in Molecular Biology, vol 1059. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-574-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-574-3_2

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-573-6

  • Online ISBN: 978-1-62703-574-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics