Skip to main content

Identification and Applications of the Petunia Class II Act1/dTph1 Transposable Element System

  • Protocol
  • First Online:
Plant Transposable Elements

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1057))

Abstract

Transposable genetic elements are considered to be ubiquitous. Despite this, their mutagenic capacity has been exploited in only a few species. The main plant species are maize, Antirrhinum, and Petunia. Representatives of all three major groups of class II elements, viz., hAT-, CACTA- and Mutator-like elements, have been identified in Petunia. Here we focus on the research “history” of the Petunia two-element Act1–dTph1 system and the development of its application in forward- and reverse-genetics studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McClintock B (1948) Mutable loci in maize. Carnegie Inst Washington Year Book 47:155–169

    Google Scholar 

  2. Berg DE, Howe MM (eds) (1989) Mobile DNA. American Society for Microbiology, Washington, DC

    Google Scholar 

  3. Finnegan DJ (1989) Eukaryotic transposable elements and genome evolution. Trends Genet 5(4):103–107

    Article  PubMed  CAS  Google Scholar 

  4. Coen ES, Carpenter R (1986) Transposable elements in Antirrhinum majus: generators of genetic diversity. Trends Genet 2:292–296

    Article  CAS  Google Scholar 

  5. Gierl A et al (1989) Maize transposable elements. Annu Rev Genet 23:71–85

    Article  PubMed  CAS  Google Scholar 

  6. Bennetzen JL et al (1993) Specificity and regulation of the mutator transposable element system in maize. Crit Rev Plant Sci 12(1–2):57–95

    CAS  Google Scholar 

  7. Gierl A, Frey M (1991) Eukaryotic transposable elements with short terminal inverted repeats. Curr Opin Genet Dev 1(4):494–497

    Article  PubMed  CAS  Google Scholar 

  8. Fedoroff NV et al (1984) Cloning of the bronze locus in maize by a simple and generalizable procedure using the transposable controlling element activator (AC). Proc Natl Acad Sci USA 81(12):3825–3829

    Article  PubMed  CAS  Google Scholar 

  9. Gierl A, Saedler H (1992) Plant-transposable elements and gene tagging. Plant Mol Biol 19(1):39–49

    Article  PubMed  CAS  Google Scholar 

  10. Osborne BI, Baker B (1995) Movers and shakers—maize transposons as tools for analyzing other plant genomes. Curr Opin Cell Biol 7(3):406–413

    Article  PubMed  CAS  Google Scholar 

  11. Das L, Martienssen R (1995) Site-selected transposon mutagenesis at the hcf106 locus in maize. Plant Cell 7(3):287–294

    PubMed  CAS  Google Scholar 

  12. Koes R et al (1995) Targeted gene inactivation in petunia by PCR-based selection of transposon insertion mutants. Proc Natl Acad Sci USA 92(18):8149–8153

    Article  PubMed  CAS  Google Scholar 

  13. Finnegan EJ et al (1989) Transposable elements can be used to study cell lineages in transgenic plants. Plant Cell 1(8):757–764

    PubMed  CAS  Google Scholar 

  14. Dellaporta S et al (1991) Cell lineage analysis of the gynoecium of maize using the transposable element Ac. Dev Suppl 1:141–147

    PubMed  CAS  Google Scholar 

  15. Scheres B et al (1995) Mutations affecting the radial organization of the Arabidopsis root display specific defects throughout the embryonic axis. Development 121(1):53–62

    CAS  Google Scholar 

  16. Malinowski E, Sachs M (1916) Die vererbung einiger blumenfarben und blumengestalten bei petunia. Comptes Rendus Se. Soc. Sciet, Varsovie

    Google Scholar 

  17. Dale EE (1941) A reversible variegation in petunia. J Hered 32:123–126

    Google Scholar 

  18. Huits HSM et al (1995) Genetic characterization of Act1, the activator of a non-autonomous transposable element from Petunia hybrida. Theor Appl Genet 91:110–117x

    Article  CAS  Google Scholar 

  19. McClintock B (1983) The significance of responses of the genome to challenge. Science 226:792–801

    Article  Google Scholar 

  20. Bianchi F, De Boer R, Pompe AJ (1974) Investigation into spontaneous reversions in a dwarf mutant of Petunia-hybrida in connection with interpretation of results of transformation experiments. Acta Bot Neerl 23:691–700

    Google Scholar 

  21. Cornu A (1977) Induced unstable systems in petunia. Mutat Res 42:235–248

    Article  Google Scholar 

  22. Hess D (1973) Versuche zur transformation an hoheren pflanzen: Untersuchungen zur realization des exosomen-modells der transformation bei Petunia hybrida. Z Pflanzenphysiol 68:432–440

    Article  Google Scholar 

  23. Bianchi F et al (1978) Regulation of gene action in Petunia hybrida: unstable alleles of a gene for flower colour. Theor Appl Genet 53:157–167

    Article  Google Scholar 

  24. Doodeman M et al (1984) Genetic analysis of instability in Petunia hybrida. 1. A highly unstable mutation induced by a transposable element inserted at the An1 locus for flower colour. Theor Appl Genet 67:345–355

    Article  Google Scholar 

  25. Mulder RJP et al (1981) Dosage effect of a gene with a regulating effect on anthocyanin synthesis in a trisomic Petunia hybrida. Genetica 55(2):111–115

    Article  Google Scholar 

  26. Doodeman M et al (1984) Genetic analysis of instability in Petunia hybrida. 4. The effect of environmental factors on the reversion rate of unstable alleles. Theor Appl Genet 69:489–495

    Google Scholar 

  27. Harrison BJ, Fincham JRS (1964) Instability at the Pa1 locus in Antirrhinum majus. 1. Effects of environment on frequencies of somatic and germinal mutation. Heredity 19:237–258

    Article  Google Scholar 

  28. Martin C, Gerats T (1993) Control of pigment biosynthesis genes during petal development. Plant Cell 5:1253–1264

    PubMed  CAS  Google Scholar 

  29. Gerats AGM, Farcy E, Wallroth M, Groot SPC, Schram A (1984) Control of anthocyanin synthesis in Petunia hybrida by multiple allelic series of the genes An1 and An2. Genetics 106(3):501–508

    PubMed  CAS  Google Scholar 

  30. Doodeman M et al (1984) Genetic analysis of instability in Petunia hybrida. 2. Unstable mutations at different loci as the result of transpositions of the genetic element inserted at the An1 locus. Theor Appl Genet 67:357–366

    Article  Google Scholar 

  31. Gerats A et al (1989) Gene tagging in Petunia-hybrida using homologous and heterologous transposable elements. Dev Genet 10:561–568

    Article  CAS  Google Scholar 

  32. Gerats AGM et al (1985) A two-element system controls instability at the An3 locus in Petunia hybrida. Theor Appl Genet 70:245–247

    Article  Google Scholar 

  33. Wijsman HJW (1986) Evidence for transposition in Petunia. Theor Appl Genet 71:791

    Article  Google Scholar 

  34. Souer E et al (1998) Genetic control of branching pattern and floral identity during Petunia inflorescence development. Development 125:733–742

    PubMed  CAS  Google Scholar 

  35. Gerats AG et al (1990) Molecular characterization of a nonautonomous transposable element (dTph1) of petunia. Plant Cell 2:1121–1128

    PubMed  CAS  Google Scholar 

  36. Spelt C et al (2002) ANTHOCYANIN1 of Petunia controls pigment synthesis, vacuolar pH, and seed coat development by genetically distinct mechanisms. Plant Cell 14:2121–2135

    Article  PubMed  CAS  Google Scholar 

  37. Gerats T (2009) Identification and exploitation of Petunia transposable elements: a brief history. In: Strommer J, Gerats T (eds) Petunia. Springer, New York, pp 365–379

    Chapter  Google Scholar 

  38. Stuurman J, Kuhlemeier C (2005) Stable two-element control of dTph1 transposition in mutator strains of Petunia by an inactive ACT1 introgression from a wild species. Plant J 41:945–955

    Article  PubMed  CAS  Google Scholar 

  39. De Keukeleire P et al (2004) A PCR-based assay to detect HAT-like transposon sequences in plants. Chromosome Res 12:117–123

    Article  PubMed  Google Scholar 

  40. Wessler S (1988) Phenotypic diversity mediated by the maize transposable elements Ac and Spm. Science 242:399–405

    Article  PubMed  CAS  Google Scholar 

  41. Van den Broeck D et al (1998) Transposon display identifies individual transposable elements in high copy number lines. Plant J 13:121–129

    PubMed  Google Scholar 

  42. De Keukeleire P et al (2001) Analysis by transposon display of the behaviour of the dTph1 element family during ontogeny and inbreeding of Petunia hybrida. Mol Genet Genom 265:72–81

    Article  Google Scholar 

  43. Vandenbussche M, Janssen A, Zethof J et al (2008) Generation of a 3D indexed petunia insertion database for reverse genetics. Plant J 54:1104–1114

    Article  Google Scholar 

  44. Souer E, van Houwelingen A, Kloos D, Mol J, Koes R (1996) The no apical meristem gene of Petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordial boundaries. Cell 85:159–170

    Article  PubMed  CAS  Google Scholar 

  45. Cartolano M et al (2007) A conserved microRNA module exerts homeotic control over Petunia hybrida and Antirrhinum majus floral organ identity. Nat Genet 39:901–905

    Article  PubMed  CAS  Google Scholar 

  46. Ballinger DG, Benzer S (1989) Targeted gene mutations in Drosophila. Proc Natl Acad Sci USA 86:9402–9406

    Article  PubMed  CAS  Google Scholar 

  47. Kaiser K, Goodwin SF (1990) “Site-selected” transposon mutagenesis of Drosophila. Proc Natl Acad Sci USA 87:1686–1690

    Article  PubMed  CAS  Google Scholar 

  48. Maes T et al (2001) Petunia Ap2-like genes and their role in flower and seed development. Plant Cell 13:229–244

    PubMed  CAS  Google Scholar 

  49. Souer E et al (1995) A general method to isolate genes tagged by a high copy number transposable element. Plant J 7:677–685

    Article  PubMed  CAS  Google Scholar 

  50. Vandenbussche M et al (2003) Toward the analysis of the petunia MADS box gene family by reverse and forward transposon insertion mutagenesis approaches: B, C, and D floral identity functions require SEPAllATA-like MADS box genes in petunia. Plant Cell 15:2680–2693

    Article  PubMed  CAS  Google Scholar 

  51. Margulies M et al (2005) Genome sequencing in micro-fabricated high-density picolitre reactors. Nature 437:376–380

    PubMed  CAS  Google Scholar 

  52. Warren WD, Atkinson PW, O’Brochta DA (1995) The Australian bush fly Musca vetustissima contains a sequence related to transposons of the hobo, Ac and Tam3 family. Gene 154(1):133–134

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

It is with great pleasure and thankfulness that I acknowledge the contribution of so many to the development of the Petunia transposon system described here; in chronological order: Marcel Beld, Eli Vrijlandt, Eric Souer, Wim Veerman, Henk Huits, Ronald Koes, Jan Zethof, Tamara Maes, Dirk van den Broeck, Peter de Keukeleire, and Michiel Vandenbussche, to mention those most heavily involved. Funding for parts of this research was provided by the Netherlands Organization for Scientific Research (H.H. and M.V.), the Flemish IWT (T.M., D.vd B. P.K.), the EC Biotech Program Bio4-CT97-2217 (M.V.), and a HORIZON grant (050-71-036) (M.V.) from the Netherlands Genomics Initiative; the development of the “454-TD” approach was performed in cooperation with Keygene (Wageningen).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Gerats, T., Zethof, J., Vandenbussche, M. (2013). Identification and Applications of the Petunia Class II Act1/dTph1 Transposable Element System. In: Peterson, T. (eds) Plant Transposable Elements. Methods in Molecular Biology, vol 1057. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-568-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-568-2_16

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-567-5

  • Online ISBN: 978-1-62703-568-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics