Skip to main content

Oriented Covalent Immobilization of Enzymes on Heterofunctional-Glyoxyl Supports

  • Protocol
  • First Online:
Immobilization of Enzymes and Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1051))

Abstract

Novel heterofunctional glyoxyl-agarose supports were prepared. These supports contained the maximal concentration of glyoxyl groups to promote maximization of covalent immobilization and groups’ capability to adsorb proteins by various mechanisms (e.g., ionic exchange, metal-chelate formation). Immobilization on various supports makes it possible to orientate and rigidify an enzyme in various regions of its surface. The use of different heterofunctional supports allowed for obtaining catalysts with different activity, stability, and selectivity properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Klibanov AM (1983) Immobilized enzymes and cells as practical catalysts. Science 219:722–727

    Article  PubMed  CAS  Google Scholar 

  2. Katchalski-Katzir E, Kraemer D (2000) Eupergit C, a carrier for immobilization of enzymes of industrial potential. J Mol Catal B Enzym 10:157–176

    Article  CAS  Google Scholar 

  3. Hartmeier W (1985) Immobilized biocatalysts—from simple to complex systems. Trends Biotechnol 3:149–153

    Article  CAS  Google Scholar 

  4. Chibata I, Tosa T, Sato T (1986) Biocatalysis: immobilized cells and enzymes. J Mol Catal B: Enzym 37:1–24

    Article  CAS  Google Scholar 

  5. Cao L, van Langen L, Sheldon RA (2003) Immobilised enzymes: carrier-bound or carrier-free? Curr Opin Biotechnol 14:387–394

    Article  PubMed  CAS  Google Scholar 

  6. Katchalski-Katzir E (1993) Immobilized enzymes-learning from past successes and failures. Trends Biotechnol 11:471–478

    Article  PubMed  CAS  Google Scholar 

  7. Khare SK, Vaidya S, Gupta MN (1991) Entrapment of proteins by aggregation within sephadex beads. Appl Biochem Biotechnol 27:205–216

    Article  PubMed  CAS  Google Scholar 

  8. Klibanov AM (1983) Stabilization of enzymes against thermal inactivation. Adv Appl Microbiol 29:1–28

    Article  PubMed  CAS  Google Scholar 

  9. Mateo C, Palomo JM, Fernandez-Lorente G, Guisan JM, Fernandez-Lafuente R (2007) Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme Microb Technol 40:1451–1463

    Article  CAS  Google Scholar 

  10. Cao L (2005) Immobilised enzymes: science or art? Curr Opin Chem Biol 9:217–226

    Article  PubMed  CAS  Google Scholar 

  11. Pedroche J, Yust MM, Mateo C, Fernandez-Lafuente R, Giron-Calle J, Alaiz M, Vioque J, Guisan JM, Millan F (2007) Effect of the support and experimental conditions in the intensity of the multipoint covalent attachment of proteins on glyoxyl-agarose supports: correlation between enzyme-support linkages and thermal stability. Enzyme Microb Technol 40:1160–1166

    Article  CAS  Google Scholar 

  12. Bolivar JM, Rocha-Martin J, Mateo C, Cava F, Berenguer J, Vega D, Fernandez-Lafuente R, Guisan JM (2009) Purification and stabilization of a glutamate dehygrogenase from Thermus thermophilus via oriented multisubunit plus multipoint covalent immobilization. J Mol Catal B: Enzym 58:158–163

    Article  CAS  Google Scholar 

  13. Rosevear A (1984) Immobilised biocatalysts—a critical review. J Chem Technol Biotechnol 34B:127–150

    CAS  Google Scholar 

  14. Guisan JM (1988) Aldehyde-agarose gels as activated supports for immobilization-stabilization of enzymes. Enzyme Microb Technol 10:375–382

    Article  CAS  Google Scholar 

  15. Mateo C, Abian O, Bernedo M, Cuenca E, Fuentes M, Fernandez-Lorente G, Palomo JM, Grazu V, Pessela BCC, Giacomini C, Irazoqui G, Villarino A, Ovsejevi K, Batista-Viera F, Fernandez-Lafuente R, Guisan JM (2005) Some special features of glyoxyl supports to immobilize proteins. Enzyme Microb Technol 37:456–462

    Article  CAS  Google Scholar 

  16. Blanco RM, Calvete JJ, Guisan JM (1989) Immobilization-stabilization of enzymes; variables that control the intensity of the trypsin (amine)-agarose (aldehyde) multipoint attachment. Enzyme Microb Technol 11:353–359

    Article  CAS  Google Scholar 

  17. Palomo JM, Fernandez-Lorente G, Rua ML, Guisan JM, Fernandez-Lafuente R (2003) Evaluation of the lipase from Bacillus thermocatenulatus as an enantioselective biocatalyst. Tetrahedron Asymmetry 14:3679–3687

    Article  CAS  Google Scholar 

  18. Nishitani Y, Osawa R (2003) A novel colorimetric method to quantify tannase activity of viable bacteria. J Microbiol Methods 54:281–284

    Article  PubMed  CAS  Google Scholar 

  19. Nishitani Y, Sasaki E, Fujisawa T, Osawa R (2004) Genotypic analyses of lactobacilli with a range of tannase activities Isolated from human feces and fermented foods. Syst Appl Microbiol 27:109–117

    Article  PubMed  CAS  Google Scholar 

  20. Vaquero I, Marcobal A, Muñoz R (2004) Tannase activity by lactic acid bacteria isolated from grape must and wine. Int J Food Microbiol 96:199–204

    Article  PubMed  CAS  Google Scholar 

  21. Rodriguez H, de las Rivas B, Gomez-Cordoves C, Muñoz R (2008) Characterization of tannase activity in cell-free extracts of Lactobacillus plantarum CECT 748T. Int J Food Microbiol 121:92–98

    Article  PubMed  CAS  Google Scholar 

  22. Nevell TP (1963) In: Whistler B (ed) Methods in carbohydrate chemistry, vol 3, NaIO4 oxidation of cellulose. Academic, New York, p 164–168

    Google Scholar 

  23. Inoue KH, Hagerman AE (1988) Determination of gallotannin with rhodanine. Anal Biochem 169:363–369

    Article  PubMed  CAS  Google Scholar 

  24. Palomo JM, Muñoz G, Fernandez-Lorente G, Mateo C, Fuentes M, Guisan JM, Fernandez-Lafuente R (2003) Modulation of Mucor miehei lipase properties via directed immobilization on different hetero-functional epoxy resins: Hydrolytic resolution of (R, S)-2-butyroyl-2-phenylacetic acid. J Mol Catal B: Enzym 21:201–210

    Article  CAS  Google Scholar 

  25. Mateo C, Bolivar JM, Godoy CA, Rocha-Martin J, Pessela BCC, Curiel JA, Muñoz R, Guisan JM, Fernandez-Lorente G (2010) Improvement of enzyme properties with a two-step immobilization process on novel heterofunctional supports. Biomacromolecules 11:3112–3117

    Article  CAS  Google Scholar 

  26. Mateo C, Fernandez-Lorente G, Abian O, Fernandez-Lafuente R, Guisan JM (2000) Multifunctional epoxy supports: A new tool to improve the covalent immobilization of proteins. The promotion of physical adsorptions of proteins on the supports before their covalent linkage. Biomacromolecules 1:739–745

    Article  PubMed  CAS  Google Scholar 

  27. Wheatley JB, Schmidt DE (1993) Salt-induced immobilization of proteins on a high-performance liquid chromatographic epoxide affinity support. J Chromatogr 644:11–16

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Mateo, C., Fernandez-Lorente, G., Rocha-Martin, J., Bolivar, J.M., Guisan, J.M. (2013). Oriented Covalent Immobilization of Enzymes on Heterofunctional-Glyoxyl Supports. In: Guisan, J. (eds) Immobilization of Enzymes and Cells. Methods in Molecular Biology, vol 1051. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-550-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-550-7_6

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-549-1

  • Online ISBN: 978-1-62703-550-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics