Skip to main content

Route of Delivery, Cell Retention, and Efficiency of Polymeric Microcapsules in Cellular Cardiomyoplasty

  • Protocol
  • First Online:
Cellular Cardiomyoplasty

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1036))

Abstract

Stem cell transplantation has been considered as a major breakthrough for treating ischemic heart disease. However, survival and retention of transplanted cells at the site of infarction remains tenuous. This chapter details a method of creating polymeric microcapsules for cell delivery, resulting in increased retention of transplanted cells at the target site, while achieving minimal mechanical trauma and cell loss. Simultaneously biocompatible and biodegradable, polymeric microcapsules have important implications in regenerative cell therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. WHO Media Center (2012) Cardiovascular disease. http://www.who.int/mediacentre/factsheets/fs317/en/index.html

  2. Roth GJ, Calverley DC (1994) Aspirin, platelets, and thrombosis: theory and practice. Blood 83:885–898

    PubMed  CAS  Google Scholar 

  3. Shepherd J, Cobbe SM, Ford I, Isles CG, Lorimer AR, Macfarlane PW, McKillop JH, Packard CJ (1995) Prevention of coronary heart disease with pravastatin in men with hypercholesterolemia. N Eng J Med 333:1301–1308

    Article  CAS  Google Scholar 

  4. DeWood MA, Spores J, Notske RN, Lang HT, Shields JP, Simpson CS, Rudy LW, Grunwald R (1979) Medical and surgical management of myocardial infarction. Am J Cardiol 44:1356–1364

    Article  PubMed  CAS  Google Scholar 

  5. Kuch B, Bolte HD, Hoermann A, Meisinger C, Loewel H (2002) What is the real hospital mortality from acute myocardial infarction? Epidemiological vs clinical view. Eur Heart J 23:714–720

    Article  PubMed  CAS  Google Scholar 

  6. Lilly L (2003) Pathophysiology of heart disease. Lippincott Williams & Wilkins, Baltimore, MD

    Google Scholar 

  7. Taki J, Higuchi T, Kawashima A, Tait JF, Kinuya S, Muramori A, Matsunari I, Nakajima K, Tonami N, Strauss HW (2004) Detection of cardiomyocyte death in a rat model of ischemia and reperfusion using 99mTc-labeled annexin V. J Nucl Med 45:1536–1541

    PubMed  CAS  Google Scholar 

  8. Ono K, Matsumori A, Shioi T, Furukawa Y, Sasayama S (1998) Cytokine gene expression after myocardial infarction in rat hearts: possible implication in left ventricular remodeling. Circulation 98:149–156

    Article  PubMed  CAS  Google Scholar 

  9. Marelli D, Desrosiers C, el-Alfy M, Kao RL, Chiu RC (1992) Cell transplantation for myocardial repair: an experimental approach. Cell Transplant 1:383–390

    PubMed  CAS  Google Scholar 

  10. Traverse JH, Henry TD, Ellis SG, Pepine CJ, Willerson JT, Zhao DX, Forder JR, Byrne BJ, Hatzopoulos AK, Penn MS, Perin EC, Baran KW, Chambers J, Lambert C, Raveendran G, Simon DI, Vaughan DE, Simpson LM, Gee AP, Taylor DA, Cogle CR, Thomas JD, Silva GV, Jorgenson BC, Olson RE, Bowman S, Francescon J, Geither C, Handberg E, Smith DX, Baraniuk S, Piller LB, Loghin C, Aguilar D, Richman S, Zierold C, Bettencourt J, Sayre SL, Vojvodic RW, Skarlatos SI, Gordon DJ, Ebert RF, Kwak M, Moyé LA, Simari RD (2011) Effect of intracoronary delivery of autologous bone marrow mononuclear cells 2 to 3 weeks following acute myocardial infarction on left ventricular function the LateTIME randomized trial. JAMA J Am Med Assoc 306(19):2110-211 9. Epub 2011 Nov 14

    Google Scholar 

  11. Abdel-Latif A, Bolli R, Tleyjeh IM, Montori VM, Perin EC, Hornung CA, Zuba-Surma EK, Al-Mallah M, Dawn B (2007) Adult bone marrow-derived cells for cardiac repair: a systematic review and meta-analysis. Arch Intern Med 167:989–997

    Article  PubMed  Google Scholar 

  12. Schächinger V, Erbs S, Elsässer A, Haberbosch W, Hambrecht R, Hölschermann H, Yu J, Corti R, Mathey DG, Hamm CW, Süselbeck T, Assmus B, Tonn T, Dimmeler S, Zeiher AM (2006) Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction. N Eng J Med 355:1210–1221

    Article  Google Scholar 

  13. Wollert K, Meyer G, Lotz J, Ringes-Lichtenberg S, Lippolt P, Breidenbach C, Fichtner S, Korte T, Hornig B, Messinger D, Arseniev L, Hertenstein B, Ganser A, Drexler H (2004) Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial. Lancet 364:141–148

    Article  PubMed  Google Scholar 

  14. Meyer GP, Wollert KC, Lotz J, Steffens J, Lippolt P, Fichtner S, Hecker H, Schaefer A, Arseniev L, Hertenstein B, Ganser A, Drexler H (2006) Intracoronary bone marrow cell transfer after myocardial infarction. Circulation 113:1287–1294

    Article  PubMed  Google Scholar 

  15. Müller-Ehmsen J, Whittaker P, Kloner RA, Dow JS, Sakoda T, Long TI, Laird PW, Kedes L (2002) Survival and development of neonatal rat cardiomyocytes transplanted into adult myocardium. J Mol Cell Cardiol 34:107–116

    Article  PubMed  Google Scholar 

  16. Retuerto MA, Schalch P, Patejunas G, Carbray J, Liu N, Esser K, Crystal RG, Rosengart TK (2004) Angiogenic pretreatment improves the efficacy of cellular cardiomyoplasty performed with fetal cardiomyocyte implantation. J Thorac Cardiovasc Surg 127:1041–1050

    Article  PubMed  Google Scholar 

  17. Zhang M, Methot D, Poppa V, Fujio Y, Walsh K, Murry CE (2001) Cardiomyocyte grafting for cardiac repair: graft cell death and anti-death strategies. J Mol Cell Cardiol 33:907–921

    Article  PubMed  CAS  Google Scholar 

  18. Teng CJ, Luo J, Chiu RCJ, Shum-Tim D (2006) Massive mechanical loss of microspheres with direct intramyocardial injection in the beating heart: implications for cellular cardiomyoplasty. J Thorac Cardiovasc Surg 132:628–632

    Article  PubMed  Google Scholar 

  19. Stolzing A, Scutt A (2006) Age-related impairment of mesenchymal progenitor cell function. Aging Cell 5:213–224

    Article  PubMed  CAS  Google Scholar 

  20. Christensen L, Dionne K, Lysaght M (1993) Biomedical application of immobilized cells. CRC Press, Boca Raton, FL

    Google Scholar 

  21. Al-Kindi A, Chen G, Asenjo J (2007) Microencapsulation to reduce mechanical loss of microspheres: implication in myocardial cell therapy. Canadian Cardiovascular Congress, Quebec City, QC

    Google Scholar 

  22. Al Kindi AH, Asenjo JF, Ge Y, Chen GY, Bhathena J, Chiu RCJ, Prakash S, Shum-Tim D (2011) Microencapsulation to reduce mechanical loss of microspheres: implications in myocardial cell therapy. Eur J Cardiothorac Surg 39:241–247

    Article  PubMed  Google Scholar 

  23. Prakash S, Jones ML (2005) Artificial cell therapy: new strategies for the therapeutic delivery of live bacteria. J Biomed Biotechnol 1:44–56

    Article  Google Scholar 

  24. Elliott RB, Escobar L, Calafiore R, Basta G, Garkavenko O, Vasconcellos A, Bambra C (2005) Transplantation of micro- and macroencapsulated piglet islets into mice and monkeys. Transplant Proc 37:466–469

    Article  PubMed  CAS  Google Scholar 

  25. Baruch L, Benny O, Gilert A, Ukobnik M, Ben Itzhak O, MacHluf M (2009) Alginate-PLL cell encapsulation system Co-entrapping PLGA-microspheres for the continuous release of anti-inflammatory drugs. Biomed Microdevices 11:1103–1113

    Article  PubMed  CAS  Google Scholar 

  26. Ding HF, Liu R, Li BG, Lou JR, Dai KR, Tang TT (2007) Biologic effect and immunoisolating behavior of BMP-2 gene-transfected bone marrow-derived mesenchymal stem cells in APA microcapsules. Biochem Biophys Res Commun 362:923–927

    Article  PubMed  CAS  Google Scholar 

  27. Murua A, de Castro M, Orive G, Hernández RM, Pedraz JL (2007) In vitro characterization and in vivo functionality of erythropoietin-secreting cells immobilized in alginate-poly-L-lysine-alginate microcapsules. Biomacromolecules 8:3302–3307

    Article  PubMed  CAS  Google Scholar 

  28. De Groot M, Schuurs TA, Van Schilfgaarde R (2004) Causes of limited survival of microencapsulated pancreatic islet grafts. J Surg Res 121:141–150

    Article  PubMed  Google Scholar 

  29. de Vos P, Bučko M, Gemeiner P, Navrátil M, Švitel J, Faas M, Strand BL, Skjak-Braek G, Morch YA, Vikartovská A, Lacík I, Kolláriková G, Orive G, Poncelet D, Pedraz JL, Ansorge-Schumacher MB (2009) Multiscale requirements for bioencapsulation in medicine and biotechnology. Biomaterials 30:2559–2570

    Article  PubMed  Google Scholar 

  30. Chen H, Ouyang W, Jones M, Metz T, Martoni C, Haque T, Cohen R, Lawuyi B, Prakash S (2007) Preparation and characterization of novel polymeric microcapsules for live cell encapsulation and therapy. Cell Biochem Biophys 47:159–167

    Article  PubMed  CAS  Google Scholar 

  31. Orive G, Maria Hernández R, Rodrı́guez Gascón A, Calafiore R, Swi Chang TM, Vos P, Hortelano G, Hunkeler D, Lacı́k I, Luis Pedraz J (2004) History, challenges and perspectives of cell microencapsulation. Trends Biotechnol 22:87–92

    Article  PubMed  CAS  Google Scholar 

  32. Říhová B (2000) Immunocompatibility and biocompatibility of cell delivery systems. Adv Drug Deliv Rev 42:65–80

    Article  PubMed  Google Scholar 

  33. Paul A, Cantor A, Shum-Tim D, Prakash S (2011) Superior cell delivery features of genipin crosslinked polymeric microcapsules: preparation, in vitro characterization and pro-angiogenic applications using human adipose stem cells. Mol Biotechnol 48:116–127

    Article  PubMed  CAS  Google Scholar 

  34. Paul A, Chen G, Khan A, Rao VT, Shum-Tim D, Prakash S (2012) Genipin-crosslinked microencapsulated human adipose stem cells augment transplant retention resulting in attenuation of chronically infracted rat heart fibrosis and cardiac dysfunction. Cell Transplant 21(12):2735–2751. Epub 2012 Apr 10

    Google Scholar 

  35. Nygren J, Jovinge S, Breitbach M, Säwén P, Röll W, Hescheler J, Taneera J, Fleischmann B, Jacobsen S (2004) Bone marrow-derived hematopoietic cells generate cardiomyocytes at a low frequency through cell fusion, but not transdifferentiation. Nat Med 10:494–501

    Article  PubMed  CAS  Google Scholar 

  36. Noiseux N, Gnecchi M, Lopez-Ilasaca M, Zhang L, Solomon SD, Deb A, Dzau VJ, Pratt RE (2006) Mesenchymal stem cells overexpressing Akt dramatically repair infarcted myocardium and improve cardiac function despite infrequent cellular fusion or differentiation. Mol Ther 14:840–850

    Article  PubMed  CAS  Google Scholar 

  37. Gnecchi M, He H, Liang OD, Melo LG, Morello F, Mu H, Noiseux N, Zhang L, Pratt RE, Ingwall JS, Dzau VJ (2005) Paracrine action accounts for marked protection of ischemic heart by Akt-modified mesenchymal stem cells. Nat Med 11:367–368

    Article  PubMed  CAS  Google Scholar 

  38. Gnecchi M, Zhang Z, Ni A, Dzau VJ (2008) Paracrine mechanisms in adult stem cell signaling and therapy. Circ Res 103:1204–1219

    Article  PubMed  CAS  Google Scholar 

  39. Atoui R, Asenjo J-F, Duong M, Chen G, Chiu RCJ, Shum-Tim D (2008) Marrow stromal cells as universal donor cells for myocardial regenerative therapy: their unique immune tolerance. Ann Thorac Surg 85:571–579

    Article  PubMed  Google Scholar 

  40. Kayser M, Caglià A, Corach D, Fretwell N, Gehrig C, Graziosi G, Heidorn F, Herrmann S, Herzog B, Hidding M, Honda K, Jobling M, Krawczak M, Leim K, Meuser S, Meyer E, Oesterreich W, Pandya A, Parson W, Penacino G, Perez-Lezaun A, Piccinini A, Prinz M, Schmitt C, Schneider PM, Szibor R, Teifel-Greding J, Weichhold G, de Knijff P, Roewer L (1997) Evaluation of Y-chromosomal STRs: a multicenter study. Int J Legal Med 110:125–133

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported in part by research grant (to D Shum-Tim and S Prakash) from Natural Sciences and Engineering Research Council, Canada. A Paul acknowledges postdoctoral award from Fonds Québécois de la Recherche sur la Nature et les Technologies (FRSQ, Canada).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Huu, A.L., Paul, A., Prakash, S., Shum-Tim, D. (2013). Route of Delivery, Cell Retention, and Efficiency of Polymeric Microcapsules in Cellular Cardiomyoplasty. In: Kao, R. (eds) Cellular Cardiomyoplasty. Methods in Molecular Biology, vol 1036. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-511-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-511-8_11

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-510-1

  • Online ISBN: 978-1-62703-511-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics