Skip to main content

Cell-Based Therapies for Myocardial Repair: Emerging Role for Bone Marrow-Derived Mesenchymal Stem Cells (MSCs) in the Treatment of the Chronically Injured Heart

  • Protocol
  • First Online:
Wound Regeneration and Repair

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1037))

Abstract

Accumulating data support the use of bone marrow (BM)-derived MSCs in animal models (e.g., swine) to restore cardiac function and tissue perfusion in chronic cardiac injury. Based on results obtained in swine, we are currently conducting phase I/II clinical trials to address the safety, cell type, cell dose, delivery technique, and efficacy of MSCs in patients with chronic heart failure. MSCs for these trials are isolated from harvested BM and then processed and expanded for intracardiac injection. The BM-MSCs in use for the clinical trials are of clinical grade having been processed successfully in an FDA-approved cGMP facility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ratcliffe E, Thomas RJ, Williams DJ (2011) Current understanding and challenges in bioprocessing of stem cell-based therapies for regenerative medicine. Br Med Bull 100(1):137–155

    Article  PubMed  Google Scholar 

  2. Astori G et al (2010) Bone marrow derived stem cells in regenerative medicine as advanced therapy medicinal products. Am J Transl Res 2(3):285–295

    PubMed Central  PubMed  Google Scholar 

  3. Bach FH et al (1968) Bone-marrow transplantation in a patient with the Wiskott-Aldrich syndrome. Lancet 2(7583):1364–1366

    Article  CAS  PubMed  Google Scholar 

  4. Gatti RA et al (1968) Immunological reconstitution of sex-linked lymphopenic immunological deficiency. Lancet 2(7583):1366–1369

    Article  CAS  PubMed  Google Scholar 

  5. Deans RJ, Moseley AB (2000) Mesenchymal stem cells: biology and potential clinical uses. Exp Hematol 28(8):875–884

    Article  CAS  PubMed  Google Scholar 

  6. Williams AR et al (2011) Intramyocardial stem cell injection in patients with ischemic cardiomyopathy: functional recovery and reverse remodeling. Circ Res 108(7):792–796

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Kemp KC, Hows J, Donaldson C (2005) Bone marrow-derived mesenchymal stem cells. Leuk Lymphoma 11(46):1531–1544

    Article  Google Scholar 

  8. Togel F, Westenfelder C (2007) Adult bone marrow-derived stem cells for organ regeneration and repair. Dev Dyn 236(12):3321–3331

    Article  CAS  PubMed  Google Scholar 

  9. Biehl JK, Russell B (2009) Introduction to stem cell therapy. J Cardiovasc Nurs 24(2):98–103

    Article  PubMed Central  PubMed  Google Scholar 

  10. Boyle AJ, McNiece IK, Hare JM (2010) Mesenchymal stem cell therapy for cardiac repair. Methods Mol Biol 660:65–84

    Article  CAS  PubMed  Google Scholar 

  11. Husnain K, Haider MA (2004) Bone marrow cell transplantation in clinical perspective. J Mol Cell Cardiol 38:225–235

    Google Scholar 

  12. Muller YD et al (2011) Transplantation tolerance: clinical potential of regulatory T cells. Self Nonself 2(1):26–34

    Article  PubMed Central  PubMed  Google Scholar 

  13. Christoforou N, Gearhart JD (2007) Stem cells and their potential in cell-based cardiac therapies. Prog Cardiovasc Dis 49(9):396–413

    Article  CAS  PubMed  Google Scholar 

  14. Kajstura J et al (2005) Bone marrow cells differentiate in cardiac cell lineages after infarction independently of cell fusion. Circ Res 96(1):127–137

    Article  CAS  PubMed  Google Scholar 

  15. Nunes SS et al (2011) Stem cell-based cardiac tissue engineering. J Cardiovasc Transl Res 4(5):592–602

    Article  PubMed  Google Scholar 

  16. Kanashiro-Takeuchi RM, Schulman IH, Hare JM (2011) Pharmacologic and genetic strategies to enhance cell therapy for cardiac regeneration. J Mol Cell Cardiol 51(4):619–625

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Schuleri KH et al (2009) Autologous mesenchymal stem cells produce reverse remodelling in chronic ischaemic cardiomyopathy. Eur Heart J 30(22):2722–2732

    Article  PubMed Central  PubMed  Google Scholar 

  18. http://clinicaltrials.gov/ct2/show/NCT00587990?term=NCT00587990&rank=1

  19. Hare JM (2009) Translational development of mesenchymal stem cell therapy for cardiovascular diseases. Tex Heart Inst J 36(2):145–147

    PubMed Central  PubMed  Google Scholar 

  20. U.S. Department of Health and Human Services, Food and Drug Administration, Center for Biologics Evaluation and Research (2008) Guidance for FDA reviewers and sponsors. Content and review of chemistry, manufacturing, and control (CMC) information for human somatic cell therapy investigational new drug applications (INDs)

    Google Scholar 

  21. CFR 312.23(a)(7)(iv)(b)

    Google Scholar 

  22. CFR 1271

    Google Scholar 

  23. CFR 113.53

    Google Scholar 

  24. CFR 211.84(a)

    Google Scholar 

  25. CFR 610.12

    Google Scholar 

  26. United States Pharmacopeia (USP) <71 > Sterility tests

    Google Scholar 

  27. CBER (1993) Points to consider in the characterization of cell lines used to produce biologicals

    Google Scholar 

  28. CFR 600.3(r)

    Google Scholar 

  29. CFR 610.13

    Google Scholar 

  30. CFR 610.9

    Google Scholar 

  31. FDA (1987) FDA guideline on validation of the Limulus Amebocyte Lysate (LAL) Test as end-product endotoxin test for human and animal parenteral drugs, biological products, and medical devices

    Google Scholar 

  32. CFR 312.23(a)(7)(ii)

    Google Scholar 

  33. CFR 1271.290(b)

    Google Scholar 

  34. CFR 312.6(a)

    Google Scholar 

  35. CFR 1271.250

    Google Scholar 

  36. CFR 1271.90

    Google Scholar 

  37. FDA (1999) Guidance for industry: container closure systems for packaging human drugs and biologics; chemistry, manufacturing, and controls documentation, May 1999

    Google Scholar 

Download references

Acknowledgements

This work is funded by National Institutes Health grants U54-HL081028 (Specialized Center for Cell-Based Therapy), P20-HL101443, and R01-grants HL084275, HL110737-01, HL107110, and HL094849 to Dr. Hare.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Da Silva, J.S., Hare, J.M. (2013). Cell-Based Therapies for Myocardial Repair: Emerging Role for Bone Marrow-Derived Mesenchymal Stem Cells (MSCs) in the Treatment of the Chronically Injured Heart. In: Gourdie, R., Myers, T. (eds) Wound Regeneration and Repair. Methods in Molecular Biology, vol 1037. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-505-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-505-7_8

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-504-0

  • Online ISBN: 978-1-62703-505-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics