Skip to main content

In Vitro Kinetic Profiling of Hepatitis C Virus NS3 Protease Inhibitors by Progress Curve Analysis

  • Protocol
  • First Online:
Antiviral Methods and Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1030))

Abstract

Kinetic profiling of drug binding to its target reveals important mechanistic parameters including drug–target residence time. In this chapter, we focus on global progress curve analysis as a convenient method for kinetic profiling. Detailed guidelines with pros and cons for various experimental designs and data analysis are provided. Kinetic profiling of Boceprevir and Telaprevir is illustrated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhang R, Monsma F (2010) Binding kinetics and mechanism of action: toward the discovery and development of better and best in class drugs. Expert Opin Drug Discov 5:1023–1029

    Article  PubMed  CAS  Google Scholar 

  2. Copeland RA (2010) The dynamics of drug-target interactions: drug-target residence time and its impact on efficacy and safety. Expert Opin Drug Discov 5:305–310

    Article  PubMed  CAS  Google Scholar 

  3. Lu H, Tonge PJ (2010) Drug-target residence time: critical information for lead optimization. Curr Opin Chem Biol 14:467–474

    Article  PubMed  CAS  Google Scholar 

  4. Swinney DC (2009) The role of binding kinetics in therapeutically useful drug action. Curr Opin Drug Discov Dev 12:31–39

    CAS  Google Scholar 

  5. Vauquelin G (2010) Rebinding: or why drugs may act longer in vivo than expected from their in vitro target residence time. Expert Opin Drug Discov 5:927–941

    Article  PubMed  CAS  Google Scholar 

  6. Copeland RA, Pompliano DL, Meek TD (2006) Drug-target residence time and its implications for lead optimization. Nat Rev Drug Discov 5:730–739

    Article  PubMed  CAS  Google Scholar 

  7. Tummino PJ, Copeland RA (2008) Residence time of receptor-ligand complexes and its effect on biological function. Biochemistry 47:5481–5492

    Article  PubMed  CAS  Google Scholar 

  8. Zhang R, Monsma F (2009) The importance of drug-target residence time. Curr Opin Drug Discov Dev 12:488–496

    CAS  Google Scholar 

  9. Fang Y (2012) Ligand-receptor interaction platforms and their applications for drug discovery. Expert Opin Drug Discov 7:969–988

    Article  PubMed  CAS  Google Scholar 

  10. Vauquelin G (2012) Determination of drug-receptor residence time by radioligand binding and functional assays: experimental strategies and physiological relevance. Med Chem Commun 3:645–651

    Article  CAS  Google Scholar 

  11. Andersson K, Karlsson R, Lofas S et al (2006) Label-free kinetic binding data as a decisive element in drug discovery. Expert Opin Drug Discov 1:439–446

    Article  PubMed  CAS  Google Scholar 

  12. Copeland RA (2005) Evaluation of enzyme inhibitors in drug discovery: a guide for medicinal chemists and pharmacologists. Wiley., Hoboken, NJ, pp 141–213

    Google Scholar 

  13. Kwong AD, Kauffman RS, Hurter P, Mueller P (2011) Discovery and development of telaprevir: an NS3-4A protease inhibitor for treating genotype 1 chronic hepatitis C virus. Nat Biotechnol 29:993–1003

    Article  PubMed  CAS  Google Scholar 

  14. Njoroge FG, Chen KX, Shih NY, Piwinski JJ (2008) Challenges in modern drug discovery: a case study of boceprevir, an HCV protease inhibitor for the treatment of hepatitis C virus infection. Acc Chem Res 41:50–59

    Article  PubMed  CAS  Google Scholar 

  15. Taremi SS, Beyer B, Maher M et al (1998) Construction, expression, and characterization of a novel fully activated recombinant single-chain hepatitis C virus protease. Protein Sci 7:2143–2149

    Article  PubMed  CAS  Google Scholar 

  16. Zhang R, Beyer BM, Durkin J et al (1999) A continuous spectrophotometric assay for the hepatitis C virus serine protease. Anal Biochem 270:268–275

    Article  PubMed  CAS  Google Scholar 

  17. Cha S (1976) Tight-binding inhibitors-III. A new approach for the determination of competition between tight-binding inhibitors and substrates-inhibition of adenosine deaminase by coformycin. Biochem Pharmacol 25:2695–2702

    Article  PubMed  CAS  Google Scholar 

  18. Morrison JF, Walsh CT (1988) The behavior and significance of slow-binding enzyme inhibitors. Adv Enzymol Relat Areas Mol Biol 61:201–301

    PubMed  CAS  Google Scholar 

  19. Sculley MJ, Morrison JF, Cleland WW (1996) Slow-binding inhibition: the general case. Biochim Biophys Acta 1298:78–86

    Article  PubMed  Google Scholar 

  20. Szedlacsek SE, Duggleby RG (1995) Kinetics of slow and tight-binding inhibitors. Methods Enzymol 249:144–180

    Article  PubMed  CAS  Google Scholar 

  21. Williams JW, Morrison JF, Duggleby RG (1979) Methotrexate, a high-affinity pseudosubstrate of dihydrofolate reductase. Biochemistry 18:2567–2573

    Article  PubMed  CAS  Google Scholar 

  22. Murphy DJ (2004) Determination of accurate KI values for tight-binding enzyme inhibitors: an in silico study of experimental error and assay design. Anal Biochem 327:61–67

    Article  PubMed  CAS  Google Scholar 

  23. Copeland RA, Basavapathruni A, Moyer M, Scott MP (2011) Impact of enzyme concentration and residence time on apparent activity recovery in jump dilution analysis. Anal Biochem 416:206–210

    Article  PubMed  CAS  Google Scholar 

  24. Kuzmic P (2008) A steady state mathematical model for stepwise “slow-binding” reversible enzyme inhibition. Anal Biochem 380:5–12

    Article  PubMed  CAS  Google Scholar 

  25. Kuzmic P, Elrod KC, Cregar LM et al (2000) High-throughput screening of enzyme inhibitors: simultaneous determination of tight-binding inhibition constants and enzyme concentration. Anal Biochem 286:45–50

    Article  PubMed  CAS  Google Scholar 

  26. Plesner IW, Bulow A, Bols M (2001) Accurate determination of rate constants of very slow, tight-binding competitive inhibitors by numerical solution of differential equations, independently of precise knowledge of the enzyme concentration. Anal Biochem 295:186–193

    Article  PubMed  CAS  Google Scholar 

  27. Cheng Y, Prusoff WH (1973) Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem Pharmacol 22:3099–3108

    Article  PubMed  CAS  Google Scholar 

  28. Yang J, Copeland RA, Lai Z (2009) Defining balanced conditions for inhibitor screening assays that target bisubstrate enzymes. J Biomol Screen 14:111–120

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The authors gratefully acknowledge the technical assistance of Edward DiNunzio, the careful reading of the manuscript by Michael Kavana, and the enthusiastic managerial support from Christine Brideau.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Zhang, R., Windsor, W.T. (2013). In Vitro Kinetic Profiling of Hepatitis C Virus NS3 Protease Inhibitors by Progress Curve Analysis. In: Gong, E. (eds) Antiviral Methods and Protocols. Methods in Molecular Biology, vol 1030. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-484-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-484-5_6

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-483-8

  • Online ISBN: 978-1-62703-484-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics