Skip to main content

Methods for Evaluation of Antiviral Efficacy Against Influenza Virus Infections in Animal Models

  • Protocol
  • First Online:
Antiviral Methods and Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1030))

Abstract

Compounds undergoing preclinical development for anti-influenza virus activity require evaluation in small animal models. Laboratory mice are most commonly used for initial studies because of size, cost, and availability. Cotton rats, guinea pigs, and ferrets (particularly) have been used for more advanced studies. Each animal infection model has certain limitations relative to human influenza infections. For example, the fever response that is evident in humans only occurs with consistency in ferrets. Mice infected with mouse-adapted viruses and ferrets infected with highly pathogenic avian influenza viruses suffer severe disease, whereas cotton rats and guinea pigs manifest few symptoms. Thus, for each animal model there is a certain set of disease parameters that can be measured. Here we describe methods for assessing the efficacy of anti-influenza virus compounds in each of these animal species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sidwell RW, Smee DF (2004) Experimental disease models of influenza virus infections: recent developments. Drug Discov Today Dis Models 1:57–63

    Article  CAS  Google Scholar 

  2. Barnard DL (2009) Animal models for the study of influenza pathogenesis and therapy. Antiviral Res 82:A110–A122

    Article  PubMed  CAS  Google Scholar 

  3. Zhang Y, Sun H, Fan L et al (2012) Acute respiratory distress syndrome induced by a swine 2009 H1N1 variant in mice. PLoS One 7(1):e29347

    Article  PubMed  CAS  Google Scholar 

  4. Zhu W, Zhu Y, Qin K et al (2012) Mutations in polymerase genes enhanced the virulence of 2009 pandemic H1N1 influenza virus in mice. PLoS One 7(3):e33383

    Article  PubMed  CAS  Google Scholar 

  5. Govorkova EA, Ilyushina NA, McClaren JL et al (2009) Susceptibility of highly pathogenic H5N1 influenza viruses to the neuraminidase inhibitor oseltamivir differs in vitro and in a mouse model. Antimicrob Agents Chemother 53:3088–3096

    Article  PubMed  CAS  Google Scholar 

  6. Sidwell RW, Bailey KW, Wong M-H, Barnard DL, Smee DF (2005) In vitro and in vivo influenza virus-inhibitory effects of viramidine. Antiviral Res 68:10–17

    Article  PubMed  CAS  Google Scholar 

  7. Radigan KA, Urich D, Misharin AV et al (2012) The effect of rosuvastatin in a murine model of influenza a infection. PLoS One 7(4):e35788

    Article  PubMed  CAS  Google Scholar 

  8. Yazawa K, Kurokawa M, Obuchi M et al (2011) Anti-influenza virus activity of tricin, 4′,5,7-trihydroxy-3′,5′-dimethoxyflavone. Antivir Chem Chemother 22:1–11

    Article  PubMed  CAS  Google Scholar 

  9. Sidwell RW, Smee DF, Huffman JH, Barnard DL et al (2001) Influence of virus strain, challenge dose, and time of therapy initiation on the in vivo influenza inhibitory effects of RWJ-270201. Antiviral Res 51:179–187

    Article  PubMed  CAS  Google Scholar 

  10. Smee DF, Wong M-H, Bailey KW, Sidwell RW (2006) Activities of oseltamivir and ribavirin used alone and in combination against infections in mice with recent isolates of influenza A (H1N1) and B viruses. Antivir Chem Chemother 17:185–192

    PubMed  CAS  Google Scholar 

  11. Murray JL, McDonald NJ, Sheng J et al (2012) Inhibition of influenza A virus replication by antagonism of a PI3K-AKT-mTOR pathway member identified by gene-trap insertional mutagenesis. Antivir Chem Chemother 22:205–215

    Article  PubMed  CAS  Google Scholar 

  12. Bantia S, Kellogg D, Parker C et al (2011) A single intramuscular injection of neuraminidase inhibitor peramivir demonstrates antiviral activity against novel pandemic A/California/04/2009 (H1N1) influenza virus infection in mice. Antiviral Res 90:17–21

    Article  PubMed  CAS  Google Scholar 

  13. Sidwell RW, Huffman JH, Call EW, Alaghamandan H, Robins RK (1986) Effect of selenazofurin on influenza A and B virus infections of mice. Antiviral Res 6:343–353

    Article  PubMed  CAS  Google Scholar 

  14. Ryan DM, Ticehurst J, Dempsey MH, Penn CR (1994) Inhibition of influenza virus replication in mice by GG167 (4-guanidino-2,4-dideoxy-2,3-dehydro-N-acetylneuraminic acid) is consistent with extracellular activity of viral neuraminidase (sialidase). Antimicrob Agents Chemother 38:2270–2275

    Article  PubMed  CAS  Google Scholar 

  15. Ekiert DC, Friesen RHE, Babha G et al (2011) A highly conserved neutralizing epitope on group 2 influenza A viruses. Science 333:843–850

    Article  PubMed  CAS  Google Scholar 

  16. Galabov AS, Simeonova L, Gegova G (2006) Rimantadine and oseltamivir demonstrate synergistic combination effect in an experimental infection with type A (H3N2) influenza virus in mice. Antivir Chem Chemother 17:251–258

    PubMed  CAS  Google Scholar 

  17. Sidwell RW, Huffman JH, Gilbert J et al (1992) Utilization of pulse oximetry for the study of the inhibitory effects of antiviral agents on influenza virus in mice. Antimicrob Agents Chemother 36:473–476

    Article  PubMed  CAS  Google Scholar 

  18. Yoo DG, Kim MC, Park MK et al (2012) Protective effect of ginseng polysaccharides on influenza viral infection. PLoS One 7(3):e33678

    Article  PubMed  CAS  Google Scholar 

  19. Sidwell RW, Barnard DL, Day CW, Smee DF et al (2007) Efficacy of orally administered T-705 on lethal avian influenza A (H5N1) virus infections in mice. Antimicrob Agents Chemother 51:845–851

    Article  PubMed  CAS  Google Scholar 

  20. Ilyushina NA, Hay A, Yilmaz N et al (2008) Oseltamivir-ribavirin combination therapy for highly pathogenic H5N1 influenza virus infection in mice. Antimicrob Agents Chemother 52:3889–3897

    Article  PubMed  CAS  Google Scholar 

  21. Kaminski MM, Ohnemus A, Cornitescu M, Staeheli P (2012) Plasmacytoid dendritic cells and Toll-like receptor 7-dependent signaling promote efficient protection of mice against highly virulent influenza A Virus. J Gen Virol 93:555–559

    Article  PubMed  CAS  Google Scholar 

  22. Min JY, Vogel L, Matsuoka Y, Lu B et al (2010) A live attenuated H7N7 candidate vaccine virus induces neutralizing antibody that confers protection from challenge in mice, ferrets, and monkeys. J Virol 84:11950–11960

    Article  PubMed  CAS  Google Scholar 

  23. Tarbet EB, Maekawa M, Furuta Y, Babu YS, Morrey JD, Smee DF (2012) Combinations of favipiravir and peramivir for the treatment of pandemic influenza A/California/04/2009 (H1N1) virus infections in mice. Antiviral Res 94:103–110

    Article  PubMed  CAS  Google Scholar 

  24. Appleyard G, Maber HB (1974) Plaque formation by influenza viruses in the presence of trypsin. J Gen Virol 25:351–357

    Article  PubMed  CAS  Google Scholar 

  25. Reed LJ, Muench H (1938) A simple method of estimating fifty per cent endpoints. Am J Hyg 27:493–498

    Google Scholar 

  26. Smee DF, Hurst BL, Wong M-H et al (2010) Combinations of oseltamivir and peramivir for the treatment of influenza A (H1N1) virus infections in cell culture and in mice. Antiviral Res 88:38–44

    Article  PubMed  CAS  Google Scholar 

  27. Smee DF, Hurst BL, Wong M-H et al (2010) Effects of the combination of favipiravir (T-705) and oseltamivir on influenza A virus infections in mice. Antimicrob Agents Chemother 54:126–133

    Article  PubMed  CAS  Google Scholar 

  28. Julander JG, Hagloch J, Latimer S, Motter N, Dagley A, Barnard DL, Smee DF, Morrey JD (2011) Use of plethysmography in assessing the efficacy of antivirals in a mouse model of pandemic influenza A virus. Antiviral Res 92:228–236

    Article  PubMed  CAS  Google Scholar 

  29. Smee DF, Bailey KW, Wong M-H et al (2008) Treatment of influenza A (H1N1) virus infections in mice and ferrets with cyanovirin-N. Antiviral Res 80:266–271

    Article  PubMed  CAS  Google Scholar 

  30. Verhoeven D, Teijaro JR, Farber DL (2009) Pulse-oximetry accurately predicts lung pathology and the immune response during influenza infection. Virology 390:151–156

    Article  PubMed  CAS  Google Scholar 

  31. Prichard MN, Shipman C Jr (1990) A three-dimensional model to analyze drug–drug interactions. Antiviral Res 14:181–205

    Article  PubMed  CAS  Google Scholar 

  32. Ottolini MG, Blanco JC, Eichelberger MC et al (2005) The cotton rat provides a useful small-animal model for the study of influenza virus pathogenesis. J Gen Virol 86:2823–2830

    Article  PubMed  CAS  Google Scholar 

  33. Lowen AC, Mubareka S, Tumpey TM et al (2006) The guinea pig as a transmission model for human influenza viruses. Proc Natl Acad Sci USA 103:9988–9992

    Article  PubMed  CAS  Google Scholar 

  34. Govorkova EA, Rehg JE, Krauss S et al (2005) Lethality to ferrets of H5N1 influenza viruses isolated from humans and poultry in 2004. J Virol 79:2191–2198

    Article  PubMed  CAS  Google Scholar 

  35. Govorkova EA, Marathe BM, Prevost A et al (2011) Assessment of the efficacy of the neuraminidase inhibitor oseltamivir against 2009 pandemic H1N1 influenza virus in ferrets. Antiviral Res 91:81–88

    Article  PubMed  CAS  Google Scholar 

  36. Huang SS, Banner D, Fang Y et al (2011) Comparative analyses of pandemic H1N1 and seasonal H1N1, H3N2, and influenza B infections depict distinct clinical pictures in ferrets. PLoS One 6(11):e27512

    Article  PubMed  CAS  Google Scholar 

  37. Boon AC, Finkelstein D, Zheng M et al (2011) H5N1 influenza virus pathogenesis in genetically diverse mice is mediated at the level of viral load. MBio 2(5):e00171-11

    Article  PubMed  Google Scholar 

  38. Otte A, Sauter M, Alleva L et al (2011) Differential host determinants contribute to the pathogenesis of 2009 pandemic H1N1 and human H5N1 influenza A viruses in experimental mouse models. Am J Pathol 179:230–239

    Article  PubMed  CAS  Google Scholar 

  39. Sidwell RW, Smee DF, Huffman JH, Barnard DL et al (2001) In vivo influenza virus-inhibitory effects of the cyclopentane neuraminidase inhibitor RJW-270201. Antimicrob Agents Chemother 45:749–757

    Article  PubMed  CAS  Google Scholar 

  40. Smee DF, Wandersee MK, Wong M-H et al (2004) Treatment of mannan-enhanced influenza B virus infections in mice with oseltamivir, ribavirin and viramidine. Antivir Chem Chemother 15:261–268

    PubMed  CAS  Google Scholar 

  41. Southam DS, Dolovich M, O'Byrne PM, Inman MD (2002) Distribution of intranasal instillations in mice: effects of volume, time, body position, and anesthesia. Am J Physiol Lung Cell Mol Physiol 282:L833–L839

    PubMed  CAS  Google Scholar 

  42. Nguyen JT, Smee DF, Barnard DL et al (2012) Efficacy of combined therapy with amantadine, oseltamivir, and ribavirin in vivo against susceptible and amantadine-resistant influenza A viruses. PLoS One 7(1):e31006

    Article  PubMed  CAS  Google Scholar 

  43. Bantia S, Kellogg D, Parker CD, Babu YS (2010) Combination of peramivir and rimantadine demonstrate synergistic antiviral effects in sub-lethal influenza A (H3N2) virus mouse model. Antiviral Res 88:276–280

    Article  PubMed  CAS  Google Scholar 

  44. Smee DF, von Itzstein M, Bhatt B, Tarbet EB (2012) Exacerbation of influenza virus infections in mice by intranasal treatments and implications for evaluation of antiviral drugs. Antimicrob Agents Chemother 56:6328–6333

    Article  Google Scholar 

  45. Motulsky H (1995) Comparing two proportions. In: Motulsky H (ed) Intuitive biostatistics. Oxford University Press, New York, pp 235–236

    Google Scholar 

Download references

Acknowledgment

This work was funded in part with Federal funds from the Respiratory Diseases Branch, Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Department of Health and Human Services, under Contract No. HHSN272201000039I/HHSN27200005/A37.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Smee, D.F., Barnard, D.L. (2013). Methods for Evaluation of Antiviral Efficacy Against Influenza Virus Infections in Animal Models. In: Gong, E. (eds) Antiviral Methods and Protocols. Methods in Molecular Biology, vol 1030. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-484-5_31

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-484-5_31

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-483-8

  • Online ISBN: 978-1-62703-484-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics