Skip to main content

Plasmodium berghei ANKA (PbA) Infection of C57BL/6J Mice: A Model of Severe Malaria

  • Protocol
  • First Online:
Mouse Models of Innate Immunity

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1031))

Abstract

The term “severe malaria” refers to a wide spectrum of syndromes in Plasmodium-infected humans including cerebral malaria (CM), respiratory distress, severe anemia, liver dysfunction, and hypoglycemia. Mouse models have been employed to further our understanding of the pathology and immune responses that occur during Plasmodium infection. Evidence of brain, liver, lung, and spleen pathology, as well as anemia and tissue-sequestration of parasites, has been reported in various strains of inbred mice. While no single mouse model mimics all the various clinical manifestations of severe malaria in humans, here we describe a detailed protocol for Plasmodium berghei ANKA infection of C57BL/6J mice. For many years, this model has been referred to as “experimental cerebral malaria,” but in fact recapitulates many of the symptoms and pathologies observed in most severe malaria syndromes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Engwerda CE, Belnoue E, Gruner AC, Renia L (2005) Experimental models of cerebral malaria. Curr Top Microbiol Immunol 297:103–143

    Article  PubMed  CAS  Google Scholar 

  2. Stevenson MM, Riley EM (2004) Innate immunity to malaria. Nat Rev Immunol 4(3):169–180

    Article  PubMed  CAS  Google Scholar 

  3. Taylor-Robinson AW (2010) Regulation of immunity to Plasmodium: implications from mouse models for blood stage malaria vaccine design. Exp Parasitol 126(3):406–414

    Article  PubMed  CAS  Google Scholar 

  4. Langhorne J, Quin SJ, Sanni LA (2002) Mouse models of blood-stage malaria infections: immune responses and cytokines involved in protection and pathology. Chem Immunol 80(80):204–228

    Article  PubMed  CAS  Google Scholar 

  5. Brian de Souza J, Hafalla JC, Riley EM, Couper KN (2010) Cerebral malaria: why experimental murine models are required to understand the pathogenesis of disease. Parasitology 137(05):755–772

    Article  PubMed  Google Scholar 

  6. Hall N, Karras M, Raine JD et al (2005) A comprehensive survey of the Plasmodium life cycle by genomic, transcriptomic, and proteomic analyses. Science 307(5706):82–86

    Article  PubMed  CAS  Google Scholar 

  7. van Dijk MR, Waters AP, Janse CJ (1995) Stable transfection of malaria parasite blood stages. Science 268(5215):1358–1362

    Article  PubMed  Google Scholar 

  8. Tomas AM, van der Wel AM, Thomas AW, Janse CJ, Waters AP (1998) Transfection systems for animal models of malaria. Parasitol Today 14(6):245–249

    Article  PubMed  CAS  Google Scholar 

  9. Stevenson MM, Gros P, Olivier M, Fortin A, Serghides L (2010) Cerebral malaria: human versus mouse studies. Trends Parasitol 26(6):274–275

    Article  PubMed  Google Scholar 

  10. Amante FH, Haque A, Stanley AC et al (2010) Immune-mediated mechanisms of parasite tissue sequestration during experimental cerebral malaria. J Immunol 185(6):3632–3642

    Article  PubMed  CAS  Google Scholar 

  11. Baptista FG, Pamplona A, Pena AC, Mota MM, Pied S, Vigario AM (2010) Accumulation of Plasmodium berghei-infected red blood cells in the brain is crucial for the development of cerebral malaria in mice. Infect Immun 78(9):4033–4039

    Article  PubMed  CAS  Google Scholar 

  12. Schofield L, Grau GE (2005) Immunological processes in malaria pathogenesis. Nat Rev Immunol 5(9):722–735

    Article  PubMed  CAS  Google Scholar 

  13. Reis PA, Comim CM, Hermani F et al (2010) Cognitive dysfunction is sustained after rescue therapy in experimental cerebral malaria, and is reduced by additive antioxidant therapy. PLoS Pathog 6(6):e1000963

    Article  PubMed  Google Scholar 

  14. Desruisseaux MS, Gulinello M, Smith DN et al (2008) Cognitive dysfunction in mice infected with Plasmodium berghei strain ANKA. J Infect Dis 197(11):1621–1627

    Article  PubMed  Google Scholar 

  15. Thumwood CM, Hunt NH, Cowden WB, Clark IA (1988) Breakdown of the blood-brain barrier in murine cerebral malaria. Parasitology 96(03):579–589

    Article  PubMed  Google Scholar 

  16. Etienne-Manneville S, Manneville JB, Adamson P, Wilbourn B, Greenwood J, Couraud PO (2000) ICAM-1-coupled cytoskeletal rearrangements and transendothelial lymphocyte migration involve intracellular calcium signaling in brain endothelial cell lines. J Immunol 165(6):3375–3383

    PubMed  CAS  Google Scholar 

  17. Haque A, Best SE, Unosson K et al (2011) Granzyme B expression by CD8+ T cells is required for the development of experimental cerebral malaria. J Immunol 186(11):6148–6156

    Article  PubMed  CAS  Google Scholar 

  18. Nitcheu J, Bonduelle O, Combadiere C et al (2003) Perforin-dependent brain-infiltrating cytotoxic CD8+ T lymphocytes mediate experimental cerebral malaria pathogenesis. J Immunol 170(4):2221–2228

    PubMed  CAS  Google Scholar 

  19. Potter S, Chan-Ling T, Ball HJ et al (2006) Perforin mediated apoptosis of cerebral microvascular endothelial cells during experimental cerebral malaria. Int J Parasitol 36(4):485–496

    Article  PubMed  CAS  Google Scholar 

  20. Belnoue E, Kayibanda M, Vigario AM et al (2002) On the pathogenic role of brain-sequestered αβ CD8+ T cells in experimental cerebral malaria. J Immunol 169(11):6369–6375

    PubMed  CAS  Google Scholar 

  21. Lovegrove FE, Gharib SA, Pena-Castillo L et al (2008) Parasite burden and CD36-mediated sequestration are determinants of acute lung injury in an experimental malaria model. PLoS Pathog 4(5):e1000068

    Article  PubMed  Google Scholar 

  22. Epiphanio S, Campos MG, Pamplona A et al (2010) VEGF promotes malaria-associated acute lung injury in mice. PLoS Pathog 6(5):e1000916

    Article  PubMed  Google Scholar 

  23. Helegbe G, Yanagi T, Senba M et al (2011) Histopathological studies in two strains of semi-immune mice infected with Plasmodium berghei ANKA after chronic exposure. Parasitol Res 108(4):807–814

    Article  PubMed  Google Scholar 

  24. Chang W-L, Jones SP, Lefer DJ et al (2001) CD8 + -T-cell depletion ameliorates circulatory shock in Plasmodium berghei-infected mice. Infect Immun 69(12):7341–7348

    Article  PubMed  CAS  Google Scholar 

  25. Weerasinghe K, Galappaththy G, Fernando WP et al (2002) A safety and efficacy trial of artesunate, sulphadoxine-pyrimethamine and primaquine in P falciparum malaria. Ceylon Med J 47(3):83

    PubMed  CAS  Google Scholar 

  26. Haque A, Best SE, Amante FH et al (2011) High parasite burdens cause liver damage in mice following Plasmodium berghei ANKA infection independently of CD8+ T cell-mediated immune pathology. Infect Immun 79(5):1882–1888

    Article  PubMed  CAS  Google Scholar 

  27. Berendt AR, Tumer GDH, Newbold CI (1994) Cerebral malaria: the sequestration hypothesis. Parasitol Today 10(10):412–414

    Article  PubMed  CAS  Google Scholar 

  28. MacPherson G, Warrell MJ, White NJ, Looareesuwan S, Warrell DA (1985) Human cerebral malaria. A quantitative ultrastructural analysis of parasitised erythrocyte sequestration. Am J Pathol 119:385–401

    PubMed  CAS  Google Scholar 

  29. Dondorp AM, Desakorn V, Pongtavornpinyo W et al (2005) Estimation of the total parasite biomass in acute falciparum malaria from plasma PfHRP2. PLoS Med 2(8):e204

    Article  PubMed  Google Scholar 

  30. Fonager J, Pasini EM, Braks JA et al (2012) Reduced CD36-dependent tissue sequestration of Plasmodium-infected erythrocytes is detrimental to malaria parasite growth in vivo. J Exp Med 209(1):93–107

    Article  PubMed  CAS  Google Scholar 

  31. Nie CQ, Bernard NJ, Schofield L, Hansen DS (2007) CD4+ CD25+ regulatory T cells suppress CD4+ T-cell function and inhibit the development of Plasmodium berghei-specific TH1 responses involved in cerebral malaria pathogenesis. Infect Immun 75(5):2275–2282

    Article  PubMed  CAS  Google Scholar 

  32. Villegas-Mendez A, de Souza JB, Murungi L et al (2011) Heterogeneous and tissue-specific regulation of effector T cell responses by IFN-γ during Plasmodium berghei ANKA infection. J Immunol 187(6):2885–2897

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

de Oca, M.M., Engwerda, C., Haque, A. (2013). Plasmodium berghei ANKA (PbA) Infection of C57BL/6J Mice: A Model of Severe Malaria. In: Allen, I. (eds) Mouse Models of Innate Immunity. Methods in Molecular Biology, vol 1031. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-481-4_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-481-4_23

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-480-7

  • Online ISBN: 978-1-62703-481-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics