Skip to main content

An Assay for α 1,6-Fucosyltransferase (FUT8) Activity Based on the HPLC Separation of a Reaction Product with Fluorescence Detection

  • Protocol
  • First Online:
Glycosyltransferases

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1022))

Abstract

N-Glycans with an α-fucose unit linked to the 6-position of the innermost GlcNAc are widely distributed among the animal kingdom, from worms and insects to human. This α1,6-linked fucosyl residue, frequently referred to as a core fucose, is formed via the action of an α1,6-fucosyltransferase, the mammalian ortholog which is systematically called FUT8. In mammals, it is well known that the extent of core-fucosylation in cellular and secreted glycoproteins varies, e.g., according to differentiation and carcinogenesis of the cells. This chapter describes a method for the sensitive and quantitative assay of FUT8 activity using a fluorescence-labeled oligosaccharyl asparagine derivative as the glycosyl acceptor substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ihara H, Ikeda Y, Taniguchi N (2006) Reaction mechanism and substrate specificity for nucleotide sugar of mammalian alpha1,6-fucosyltransferase—a large-scale preparation and characterization of recombinant human FUT8. Glycobiology 16:333–342

    Article  PubMed  CAS  Google Scholar 

  2. Ihara H, Ikeda Y, Toma S, Wang X, Suzuki T, Gu J, Miyoshi E, Tsukihara T, Honke K, Matsumoto A, Nakagawa A, Taniguchi N (2007) Crystal structure of mammalian alpha1,6-fucosyltransferase, FUT8. Glycobiology 17:455–466

    Article  PubMed  CAS  Google Scholar 

  3. Ihara H, Hanashima S, Okada T, Ito R, Yamaguchi Y, Taniguchi N, Ikeda Y (2010) Fucosylation of chitooligosaccharides by human alpha1,6-fucosyltransferase requires a nonreducing terminal chitotriose unit as a minimal structure. Glycobiology 20:1021–1033

    Article  PubMed  CAS  Google Scholar 

  4. Wang X, Inoue S, Gu J, Miyoshi E, Noda K, Li W, Mizuno-Horikawa Y, Nakano M, Asahi M, Takahashi M, Uozumi N, Ihara S, Lee SH, Ikeda Y, Yamaguchi Y, Aze Y, Tomiyama Y, Fujii J, Suzuki K, Kondo A, Shapiro SD, Lopez-Otin C, Kuwaki T, Okabe M, Honke K, Taniguchi N (2005) Dysregulation of TGF-beta1 receptor activation leads to abnormal lung development and emphysema-like phenotype in core fucose-deficient mice. Proc Natl Acad Sci USA 102:15791–15796

    Article  PubMed  CAS  Google Scholar 

  5. Wang X, Gu J, Ihara H, Miyoshi E, Honke K, Taniguchi N (2006) Core fucosylation regulates epidermal growth factor receptor-mediated intracellular signaling. J Biol Chem 281:2572–2577

    Article  PubMed  CAS  Google Scholar 

  6. Wang X, Fukuda T, Li W, Gao CX, Kondo A, Matsumoto A, Miyoshi E, Taniguchi N, Gu J (2009) Requirement of Fut8 for the expression of vascular endothelial growth factor receptor-2: a new mechanism for the emphysema-like changes observed in Fut8-deficient mice. J Biochem 145:643–651

    Article  PubMed  CAS  Google Scholar 

  7. Lee SH, Takahashi M, Honke K, Miyoshi E, Osumi D, Sakiyama H, Ekuni A, Wang X, Inoue S, Gu J, Kadomatsu K, Taniguchi N (2006) Loss of core fucosylation of low-density lipoprotein receptor-related protein-1 impairs its function, leading to the upregulation of serum levels of insulin-like growth factor-binding protein 3 in Fut8−/− mice. J Biochem 139:391–398

    Article  PubMed  CAS  Google Scholar 

  8. Osumi D, Takahashi M, Miyoshi E, Yokoe S, Lee SH, Noda K, Nakamori S, Gu J, Ikeda Y, Kuroki Y, Sengoku K, Ishikawa M, Taniguchi N (2009) Core fucosylation of E-cadherin enhances cell-cell adhesion in human colon carcinoma WiDr cells. Cancer Sci 100:888–895

    Article  PubMed  CAS  Google Scholar 

  9. Zhao Y, Itoh S, Wang X, Isaji T, Miyoshi E, Kariya Y, Miyazaki K, Kawasaki N, Taniguchi N, Gu J (2006) Deletion of core fucosylation on alpha3beta1 integrin down-regulates its functions. J Biol Chem 281:38343–38350

    Article  PubMed  CAS  Google Scholar 

  10. Li W, Ishihara K, Yokota T, Nakagawa T, Koyama N, Jin J, Mizuno-Horikawa Y, Wang X, Miyoshi E, Taniguchi N, Kondo A (2008) Reduced alpha4beta1 integrin/VCAM-1 interactions lead to impaired pre-B cell repopulation in alpha 1,6-fucosyltransferase deficient mice. Glycobiology 18:114–124

    Article  PubMed  CAS  Google Scholar 

  11. Shields RL, Lai J, Keck R, O’Connell LY, Hong K, Meng YG, Weikert SH, Presta LG (2002) Lack of fucose on human IgG1 N-linked oligosaccharide improves binding to human Fcgamma RIII and antibody-dependent cellular toxicity. J Biol Chem 277:26733–26740

    Article  PubMed  CAS  Google Scholar 

  12. Shinkawa T, Nakamura K, Yamane N, Shoji-Hosaka E, Kanda Y, Sakurada M, Uchida K, Anazawa H, Satoh M, Yamasaki M, Hanai N, Shitara K (2003) The absence of fucose but not the presence of galactose or bisecting N-acetylglucosamine of human IgG1 complex-type oligosaccharides shows the critical role of enhancing antibody-dependent cellular cytotoxicity. J Biol Chem 278:3466–3473

    Article  PubMed  CAS  Google Scholar 

  13. Alpert ME, Uriel J, de Nechaud B (1968) Alpha-1 fetoglobulin in the diagnosis of human hepatoma. N Engl J Med 278:984–986

    Article  PubMed  CAS  Google Scholar 

  14. Ruoslahti E, Salaspuro M, Pihko H, Andersson L, Seppala M (1974) Serum alpha-fetoprotein: diagnostic significance in liver disease. Br Med J 2:527–529

    Article  PubMed  CAS  Google Scholar 

  15. Taketa K (1990) Alpha-fetoprotein: reevaluation in hepatology. Hepatology 12:1420–1432

    Article  PubMed  CAS  Google Scholar 

  16. Aoyagi Y (1995) Carbohydrate-based measurements on alpha-fetoprotein in the early diagnosis of hepatocellular carcinoma. Glycoconj J 12:194–199

    Article  PubMed  CAS  Google Scholar 

  17. Miyoshi E, Noda K, Yamaguchi Y, Inoue S, Ikeda Y, Wang W, Ko JH, Uozumi N, Li W, Taniguchi N (1999) The alpha1-6-fucosyltransferase gene and its biological significance. Biochim Biophys Acta 1473:9–20

    Article  PubMed  CAS  Google Scholar 

  18. Takahashi T, Ikeda Y, Miyoshi E, Yaginuma Y, Ishikawa M, Taniguchi N (2000) alpha1,6fucosyltransferase is highly and specifically expressed in human ovarian serous adenocarcinomas. Int J Cancer 88:914–919

    Article  PubMed  CAS  Google Scholar 

  19. Nishikawa A, Fujii S, Sugiyama T, Taniguchi N (1988) A method for the determination of N-acetylglucosaminyltransferase III activity in rat tissues involving HPLC. Anal Biochem 170:349–354

    Article  PubMed  CAS  Google Scholar 

  20. Tomiya N, Lee YC, Yoshida T, Wada Y, Awaya J, Kurono M, Takahashi N (1991) Calculated two-dimensional sugar map of pyridylaminated oligosaccharides: elucidation of the jack bean alpha-mannosidase digestion pathway of Man9GlcNAc2. Anal Biochem 193:90–100

    Article  PubMed  CAS  Google Scholar 

  21. Kondo A, Suzuki J, Kuraya N, Hase S, Kato I, Ikenaka T (1990) Improved method for fluorescence labeling of sugar chains with sialic acid residues. Agric Biol Chem 54:2169–2170

    Article  PubMed  CAS  Google Scholar 

  22. Palmerini CA, Datti A, Alunni S, VanderElst IE, Orlacchio A (1995) A fluorescent assay for the determination of UDP-GlcNAc: Gal beta 1,3GalNAc-R (GlcNAc to GalNAc) beta 1,6-N-acetylglucosaminyltransferase activity. Anal Biochem 225:315–320

    Article  PubMed  CAS  Google Scholar 

  23. Sasaki K, Kurata K, Funayama K, Nagata M, Watanabe E, Ohta S, Hanai N, Nishi T (1994) Expression cloning of a novel alpha 1,3-fucosyltransferase that is involved in biosynthesis of the sialyl Lewis × carbohydrate determinants in leukocytes. J Biol Chem 269:14730–14737

    PubMed  CAS  Google Scholar 

  24. Mita Y, Aoyagi Y, Suda T, Asakura H (2000) Plasma fucosyltransferase activity in patients with hepatocellular carcinoma, with special reference to correlation with fucosylated species of alpha-fetoprotein. J Hepatol 32:946–954

    Article  PubMed  CAS  Google Scholar 

  25. Uozumi N, Teshima T, Yamamoto T, Nishikawa A, Gao YE, Miyoshi E, Gao CX, Noda K, Islam KN, Ihara Y, Fujii S, Shiba T, Taniguchi N (1996) A fluorescent assay method for GDP-L-Fuc:N-acetyl-beta-D-glucosaminide alpha 1-6fucosyltransferase activity, involving high performance liquid chromatography. J Biochem 120:385–392

    Article  PubMed  CAS  Google Scholar 

  26. Seko A, Koketsu M, Nishizono M, Enoki Y, Ibrahim HR, Juneja LR, Kim M, Yamamoto T (1997) Occurrence of a sialylglycopeptide and free sialylglycans in hen’s egg yolk. Biochim Biophys Acta 1335:23–32

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Ihara, H., Tsukamoto, H., Taniguchi, N., Ikeda, Y. (2013). An Assay for α 1,6-Fucosyltransferase (FUT8) Activity Based on the HPLC Separation of a Reaction Product with Fluorescence Detection. In: Brockhausen, I. (eds) Glycosyltransferases. Methods in Molecular Biology, vol 1022. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-465-4_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-465-4_25

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-464-7

  • Online ISBN: 978-1-62703-465-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics