Skip to main content

A Fluorescence-Based Assay for Core 1 β3Galactosyltransferase (T-Synthase) Activity

  • Protocol
  • First Online:
Glycosyltransferases

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1022))

Abstract

Mucin-type O-glycans on glycoproteins in animal cells play important roles in many biological processes. Core 1 β3galactosyltransferase (Core 1 β3GalT, T-synthase) is a key enzyme in the O-glycan biosynthetic pathway. Emerging evidence has shown the importance of O-glycans and the absolute requirement of T-synthase in this pathway. The assessment of the T-synthase activity has historically been conducted using a radioactive method. Here we describe a fluorescence-based assay procedure for T-synthase activity. T-synthase utilizes the acceptor substrate 4-methylumbelliferone-α-GalNAc (GalNAcα-(4-MU)) and the donor substrate UDP-Gal to synthesize the disaccharide product Galβ1,3GalNAcα-(4-MU) structure. This product is specifically hydrolyzed by endo-α-N-acetylgalactosaminidase (O-glycosidase) releasing free 4-MU. Free 4-MU is highly fluorescent at pH 9.6–10 and can be easily measured by a fluorescent detector (Ex: 355 nm; Em: 460 nm). This fluorescence-based T-synthase assay is simple, sensitive, reproducible, not affected by enzyme source, and adaptable for high-throughput assays.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

4-MU:

4-Methylumbelliferone

T-synthase:

UDP-Gal:N-acetylgalactosaminyl-α1-Ser/Thr β3galactosyltransferase

T antigen:

Galβ1-3GalNAcα1-Ser/Thr

Tn antigen:

GalNAcα1-Ser/Thr

O-glycosidase:

Endo-α-N-acetylgalactosaminidase

UDP-Gal:

Uridine diphosphate galactose

GalNAc:

N-Acetylgalactosamine (2-acetamido-2-deoxy-d-galactose)

Gal:

d-Galactose

Ser/Thr:

Serine/Threonine

References

  1. Leppanen A, Mehta P, Ouyang YB, Ju T, Helin J, Moore KL, van Die I, Canfield WM, McEver RP, Cummings RD (1999) A novel glycosulfopeptide binds to P-selectin and inhibits leukocyte adhesion to P-selectin. J Biol Chem 274(35):24838–24848

    Article  PubMed  CAS  Google Scholar 

  2. Sperandio M (2006) Selectins and glycosyltransferases in leukocyte rolling in vivo. FEBS J 273(19):4377–4389

    Article  PubMed  CAS  Google Scholar 

  3. McEver RP, Cummings RD (1997) Role of PSGL-1 binding to selectins in leukocyte recruitment. J Clin Invest 100(11 Suppl):S97–S103

    PubMed  CAS  Google Scholar 

  4. McEver RP, Cummings RD (1997) Perspectives series: cell adhesion in vascular biology. Role of PSGL-1 binding to selectins in leukocyte recruitment. J Clin Invest 100(3):485–491

    Article  PubMed  CAS  Google Scholar 

  5. Leppanen A, Yago T, Otto VI, McEver RP, Cummings RD (2003) Model glycosulfopeptides from P-selectin glycoprotein ligand-1 require tyrosine sulfation and a core 2-branched O-glycan to bind to L-selectin. J Biol Chem 278(29):26391–26400

    Article  PubMed  Google Scholar 

  6. Yeh JC, Hiraoka N, Petryniak B, Nakayama J, Ellies LG, Rabuka D, Hindsgaul O, Marth JD, Lowe JB, Fukuda M (2001) Novel sulfated lymphocyte homing receptors and their control by a Core1 extension beta 1,3-N-acetylglucosaminyltransferase. Cell 105(7):957–969

    Article  PubMed  CAS  Google Scholar 

  7. Fukuda M, Carlsson SR (1986) Leukosialin, a major sialoglycoprotein on human leukocytes as differentiation antigens. Med Biol 64(6):335–343

    PubMed  CAS  Google Scholar 

  8. Xia L, Ju T, Westmuckett A, An G, Ivanciu L, McDaniel JM, Lupu F, Cummings RD, McEver RP (2004) Defective angiogenesis and fatal embryonic hemorrhage in mice lacking core 1-derived O-glycans. J Cell Biol 164(3):451–459

    Article  PubMed  CAS  Google Scholar 

  9. Fu J, Gerhardt H, McDaniel JM, Xia B, Liu X, Ivanciu L, Ny A, Hermans K, Silasi-Mansat R, McGee S, Nye E, Ju T, Ramirez MI, Carmeliet P, Cummings RD, Lupu F, Xia L (2008) Endothelial cell O-glycan deficiency causes blood/lymphatic misconnections and consequent fatty liver disease in mice. J Clin Invest 118(11):3725–3737

    Article  PubMed  CAS  Google Scholar 

  10. Ju T, Brewer K, D’Souza A, Cummings RD, Canfield WM (2002) Cloning and expression of human core 1 beta1,3-galactosyltransferase. J Biol Chem 277(1):178–186

    Article  PubMed  CAS  Google Scholar 

  11. Berger EG (1999) Tn-syndrome. Biochim Biophys Acta 1455(2–3):255–268

    PubMed  CAS  Google Scholar 

  12. Cartron JP, Nurden AT (1979) Galacto-syltransferase and membrane ­glycoprotein abnormality in human platelets from Tn-syndrome donors. Nature 282(5739):621–623

    Article  PubMed  CAS  Google Scholar 

  13. Allen AC, Topham PS, Harper SJ, Feehally J (1997) Leucocyte beta 1,3 galactosyltransferase activity in IgA nephropathy. Nephrol Dial Transplant 12(4):701–706

    Article  PubMed  CAS  Google Scholar 

  14. Blanchard B, Nurisso A, Hollville E, Tetaud C, Wiels J, Pokorna M, Wimmerova M, Varrot A, Imberty A (2008) Structural basis of the preferential binding for globo-series glycosphingolipids displayed by Pseudomonas aeruginosa lectin I. J Mol Biol 383(4):837–853

    Article  PubMed  CAS  Google Scholar 

  15. Springer GF (1984) T and Tn, general carcinoma autoantigens. Science 224(4654):1198–1206

    Article  PubMed  CAS  Google Scholar 

  16. Springer GF, Taylor CR, Howard DR, Tegtmeyer H, Desai PR, Murthy SM, Felder B, Scanlon EF (1985) Tn, a carcinoma-­associated antigen, reacts with anti-Tn of normal human sera. Cancer 55(3):561–569

    Article  PubMed  CAS  Google Scholar 

  17. Ju T, Aryal RP, Stowell CJ, Cummings RD (2008) Regulation of protein O-glycosylation by the endoplasmic reticulum-localized molecular chaperone Cosmc. J Cell Biol 182(3):531–542

    Article  PubMed  CAS  Google Scholar 

  18. Ju T, Cummings RD (2002) A unique molecular chaperone Cosmc required for activity of the mammalian core 1 beta 3-­galactosyltransferase. Proc Natl Acad Sci U S A 99(26):16613–16618

    Article  PubMed  CAS  Google Scholar 

  19. Wang Y, Ju T, Ding X, Xia B, Wang W, Xia L, He M, Cummings RD (2010) Cosmc is an essential chaperone for correct protein O-glycosylation. Proc Natl Acad Sci USA 107(20):9228–9233

    Article  PubMed  CAS  Google Scholar 

  20. Aryal RP, Ju T, Cummings RD (2010) The endoplasmic reticulum chaperone Cosmc directly promotes in vitro folding of T-synthase. J Biol Chem 285(4):2456–2462

    Article  PubMed  CAS  Google Scholar 

  21. Ju T, Cummings RD (2005) Protein glycosylation: chaperone mutation in Tn syndrome. Nature 437(7063):1252

    Article  PubMed  CAS  Google Scholar 

  22. Ju T, Lanneau GS, Gautam T, Wang Y, Xia B, Stowell SR, Willard MT, Wang W, Xia JY, Zuna RE, Laszik Z, Benbrook DM, Hanigan MH, Cummings RD (2008) Human tumor antigens Tn and sialyl Tn arise from mutations in Cosmc. Cancer Res 68(6):1636–1646

    Article  PubMed  CAS  Google Scholar 

  23. Crew VK, Singleton BK, Green C, Parsons SF, Daniels G, Anstee DJ (2008) New mutations in C1GALT1C1 in individuals with Tn positive phenotype. Br J Haematol 142(4):657–667

    Article  PubMed  CAS  Google Scholar 

  24. Schietinger A, Philip M, Yoshida BA, Azadi P, Liu H, Meredith SC, Schreiber H (2006) A mutant chaperone converts a wild-type protein into a tumor-specific antigen. Science 314(5797):304–308

    Article  PubMed  CAS  Google Scholar 

  25. Furukawa K, Roth S (1985) Co-purification of galactosyltransferases from chick-embryo liver. Biochem J 227(2):573–582

    PubMed  CAS  Google Scholar 

  26. Granovsky M, Bielfeldt T, Peters S, Paulsen H, Meldal M, Brockhausen J, Brockhausen I (1994) UDPgalactose:glycoprotein-N-acetyl-­D-galactosamine 3-beta-D-­galactosyltransferase activity synthesizing O-glycan core 1 is controlled by the amino acid sequence and glycosylation of glycopeptide substrates. Eur J Biochem 221(3):1039–1046

    Article  PubMed  CAS  Google Scholar 

  27. Ju T, Cummings RD, Canfield WM (2002) Purification, characterization, and subunit structure of rat core 1 Beta1,3-­galactosyltransferase. J Biol Chem 277(1):169–177

    Article  PubMed  CAS  Google Scholar 

  28. Mendicino J, Sivakami S, Davila M, Chandrasekaran EV (1982) Purification and properties of UDP-gal:N-acetylgalactosaminide mucin: beta 1,3-galactosyltransferase from swine trachea mucosa. J Biol Chem 257(7):3987–3994

    PubMed  CAS  Google Scholar 

  29. Ju T, Xia B, Aryal RP, Wang W, Wang Y, Ding X, Mi R, He M, Cummings RD (2011) A novel fluorescent assay for T-synthase activity. Glycobiology 21(3):352–362

    Article  PubMed  CAS  Google Scholar 

  30. Inoue T, Sugiyama H, Hiki Y, Takiue K, Morinaga H, Kitagawa M, Maeshima Y, Fukushima K, Nishizaki K, Akagi H, Narimatsu Y, Narimatsu H, Makino H (2010) Differential expression of glycogenes in tonsillar B lymphocytes in association with proteinuria and renal dysfunction in IgA nephropathy. Clin Immunol 136(3):447–455

    Article  PubMed  CAS  Google Scholar 

  31. Yamada K, Kobayashi N, Ikeda T, Suzuki Y, Tsuge T, Horikoshi S, Emancipator SN, Tomino Y (2010) Down-regulation of core 1 beta1,3-galactosyltransferase and Cosmc by Th2 cytokine alters O-glycosylation of IgA1. Nephrol Dial Transplant 25(12):3890–3897

    Article  PubMed  CAS  Google Scholar 

  32. Qin W, Zhong X, Fan JM, Zhang YJ, Liu XR, Ma XY (2008) External suppression causes the low expression of the Cosmc gene in IgA nephropathy. Nephrol Dial Transplant 23(5):1608–1614

    Article  PubMed  CAS  Google Scholar 

  33. Qin W, Zhou Q, Yang LC, Li Z, Su BH, Luo H, Fan JM (2005) Peripheral B lymphocyte beta1,3-galactosyltransferase and chaperone expression in immunoglobulin A nephropathy. J Intern Med 258(5):467–477

    Article  PubMed  CAS  Google Scholar 

  34. Mead JA, Smith JN, Williams RT (1955) Studies in detoxication. 67. The biosynthesis of the glucuronides of umbelliferone and 4-methylumbelliferone and their use in fluorimetric determination of beta-glucuronidase. Biochem J 61(4):569–574

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Drs. Jamie Heimburg-Molinaro and Rajindra P. Aryal for helpful suggestions on this manuscript. This work was supported by NIH Grant R01DK80876 (to T.J.).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Ju, T., Cummings, R.D. (2013). A Fluorescence-Based Assay for Core 1 β3Galactosyltransferase (T-Synthase) Activity. In: Brockhausen, I. (eds) Glycosyltransferases. Methods in Molecular Biology, vol 1022. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-465-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-465-4_2

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-464-7

  • Online ISBN: 978-1-62703-465-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics