Skip to main content

Culturing Mouse Cerebellar Granule Neurons

  • Protocol
  • First Online:
Neural Development

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1018))

Abstract

The cerebellum plays an important role in motor control, motor skill acquisition, memory and learning among other brain functions. In rodents, cerebellar development continues after birth, characterized by the maturation of granule neurons. Cerebellar granule neurons (CGNs) are the most abundant neuronal type in the central nervous system, and they provide an excellent model for investigating molecular, ­cellular, and physiological mechanisms underlying neuronal development as well as neural circuitry linked to behavior. Here we describe a procedure to isolate and culture CGNs from postnatal day 6 mice. These cultures can be used to examine numerous aspects of CGN differentiation, electrophysiology, and function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CGNs:

Cerebellar granule neurons

CGNPs:

Cerebellar granule neuron progenitors

EGL:

External germinal layer

PMZ:

Premigratory zone

NB:

Neurobasal

PLY:

Poly-d-lysine

Shh:

Sonic hedgehog

BSA:

Bovine serum albumin

References

  1. Timmann D, Daum I (2007) Cerebellar contributions to cognitive functions: a progress report after two decades of research. Cerebellum 6(3):159–162

    Article  PubMed  Google Scholar 

  2. Schmahmann JD, Caplan D (2006) Cognition, emotion and the cerebellum. Brain 129(Pt 2):290–292

    PubMed  Google Scholar 

  3. Ito M (2006) Cerebellar circuitry as a neuronal machine. Prog Neurobiol 78(3–5):272–303

    Article  PubMed  Google Scholar 

  4. Kilpatrick DL, Wang W, Gronostajski R, Litwack ED (2010) Nuclear factor I and cerebellar granule neuron development: an intrinsic-extrinsic interplay. Cerebellum. doi:10.1007/s12311-010-0227-0

    Google Scholar 

  5. Millen KJ, Gleeson JG (2008) Cerebellar development and disease. Curr Opin Neurobiol 18(1):12–19

    Article  PubMed  CAS  Google Scholar 

  6. Wang W, Crandall JE, Litwack ED, Gronostajski RM, Kilpatrick DL (2010) Targets of the nuclear factor I regulon involved in early and late development of postmitotic cerebellar granule neurons. J Neurosci Res 88(2):258–265

    Article  PubMed  CAS  Google Scholar 

  7. Wang W, Stock RE, Gronostajski RM, Wong YW, Schachner M, Kilpatrick DL (2004) A role for nuclear factor I in the intrinsic control of cerebellar granule neuron gene expression. J Biol Chem 279(51):53491–53497

    Article  PubMed  CAS  Google Scholar 

  8. Kilpatrick DL, Wang W, Gronostajski R, Litwack ED (2012) Nuclear factor I and cerebellar granule neuron development: an intrinsic-extrinsic interplay. Cerebellum 11(1):41–49

    Article  PubMed  CAS  Google Scholar 

  9. Goldowitz D, Hamre K (1998) The cells and molecules that make a cerebellum. Trends Neurosci 21(9):375–382

    Article  PubMed  CAS  Google Scholar 

  10. Hatten ME, Alder J, Zimmerman K, Heintz N (1997) Genes involved in cerebellar cell specification and differentiation. Curr Opin Neurobiol 7(1):40–47

    Article  PubMed  CAS  Google Scholar 

  11. Altman J (1972) Postnatal development of the cerebellar cortex in the rat. 3. Maturation of the components of the granular layer. J Comp Neurol 145(4):465–513

    Article  PubMed  CAS  Google Scholar 

  12. Hamori J, Somogyi J (1983) Differentiation of cerebellar mossy fiber synapses in the rat: a quantitative electron microscope study. J Comp Neurol 220(4):365–377

    Article  PubMed  CAS  Google Scholar 

  13. Wang W, Shin Y, Shi M, Kilpatrick DL (2011) Temporal control of a dendritogenesis-linked gene via REST-dependent regulation of nuclear factor I occupancy. Mol Biol Cell 22(6):868–879

    Article  PubMed  CAS  Google Scholar 

  14. Lin X, Bulleit RF (1996) Cell intrinsic mechanisms regulate mouse cerebellar granule neuron differentiation. Neurosci Lett 220(2):81–84

    Article  PubMed  CAS  Google Scholar 

  15. Powell SK, Rivas RJ, Rodriguez-Boulan E, Hatten ME (1997) Development of polarity in cerebellar granule neurons. J Neurobiol 32(2):223–236

    Article  PubMed  CAS  Google Scholar 

  16. Gao WO, Heintz N, Hatten ME (1991) Cerebellar granule cell neurogenesis is regulated by cell-cell interactions in vitro. Neuron 6(5):705–715

    Article  PubMed  CAS  Google Scholar 

  17. Wang W, Qu Q, Smith FI, Kilpatrick DL (2005) Self-inactivating lentiviruses: versatile vectors for quantitative transduction of cerebellar granule neurons and their progenitors. J Neurosci Methods 149(2):144–153

    Article  PubMed  Google Scholar 

  18. Hatten ME (1985) Neuronal regulation of astroglial morphology and proliferation in vitro. J Cell Biol 100(2):384–396

    Article  PubMed  CAS  Google Scholar 

  19. Wechsler-Reya RJ, Scott MP (1999) Control of neuronal precursor proliferation in the cerebellum by Sonic Hedgehog. Neuron 22(1):103–114

    Article  PubMed  CAS  Google Scholar 

  20. Nagata I, Nakatsuji N (1990) Granule cell behavior on laminin in cerebellar microexplant cultures. Brain Res Dev Brain Res 52(1–2):63–73

    Article  PubMed  CAS  Google Scholar 

  21. Gallo V, Kingsbury A, Balazs R, Jorgensen OS (1987) The role of depolarization in the survival and differentiation of cerebellar granule cells in culture. J Neurosci 7(7):2203–2213

    PubMed  CAS  Google Scholar 

  22. Fujikawa N, Tominaga-Yoshino K, Okabe M, Ogura A (2000) Depolarization-dependent survival of cultured mouse cerebellar granule neurons is strain-restrained. Eur J Neurosci 12(5):1838–1842

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Selvakumar, T., Kilpatrick, D.L. (2013). Culturing Mouse Cerebellar Granule Neurons. In: Zhou, R., Mei, L. (eds) Neural Development. Methods in Molecular Biology, vol 1018. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-444-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-444-9_5

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-443-2

  • Online ISBN: 978-1-62703-444-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics