Skip to main content

Microcontact Printing of Substrate-Bound Protein Patterns for Cell and Tissue Culture

  • Protocol
  • First Online:
Neural Development

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1018))

Abstract

Patterned distributions of signalling molecules play fundamental roles during embryonic development. Several attempts have been made to reproduce these patterns in vitro. In order to study substrate-bound or membrane proteins, microcontact printing (μCP) is a suitable method for tethering molecules on various surfaces. Here, we describe three μCP variants to produce patterns down to feature sizes of about 300 nm, which are highly variable with respect to shape, protein spacing, and density. Briefly, the desired pattern is etched into a silicon master, which is then used as a master for the printing process. Each variant offers certain advantages and the method of choice depends on the desired protein and the biological question.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kumar A, Whitesides GM (1993) Features of gold having micrometer to centimeter dimensions can be formed through a combination of stamping with an elastomeric stamp and an alkanethiol “ink” followed by chemical etching. Appl Phys Lett 63:2002–2004

    Article  CAS  Google Scholar 

  2. Jackman RJ, Wilbur JL, Whitesides GM (1995) Fabrication of submicrometer features on curved substrates by microcontact printing. Science 269:664–666

    Article  PubMed  CAS  Google Scholar 

  3. Mrksich M, Chen CS, Xia Y et al (1996) Controlling cell attachment on contoured ­surfaces with self-assembled monolayers of alkanethiolates on gold. Proc Natl Acad Sci USA 93:10775–10778

    Article  PubMed  CAS  Google Scholar 

  4. Bernard A, Renault JP, Michel B et al (2000) Microcontact printing of proteins. Adv Mater 12:1067–1070

    Article  CAS  Google Scholar 

  5. Michel B, Bernard A, Bietsch A et al (2001) Printing meets lithography: soft approaches to high-resolution patterning. J Res Dev 45:697–719

    CAS  Google Scholar 

  6. Shi P, Shen K, Kam LC (2007) Local presentation of L1 and N-cadherin in multicomponent, microscale patterns differentially direct neuron function in vitro. Dev Neurobiol 67:1765–1776

    Article  PubMed  CAS  Google Scholar 

  7. Cornish T, Branch DW, Wheeler BC et al (2002) Microcontact printing: a versatile technique for the study of synaptogenic molecules. Mol Cell Neurosci 20:140–153

    Article  PubMed  CAS  Google Scholar 

  8. Chiang L, Poole K, Oliveira BE et al (2011) Laminin-332 coordinates mechanotransduction and growth cone bifurcation in sensory neurons. Nat Neurosci 14:993–1000

    Article  PubMed  CAS  Google Scholar 

  9. McLaughlin T, O’Leary D (2005) Molecular gradients and development of retinotopic maps. Annu Rev Neurosci 28:327–355

    Article  PubMed  CAS  Google Scholar 

  10. Keenan TM, Folch A (2008) Biomolecular gradients in cell culture systems. Lab Chip 8:34–57

    Article  PubMed  CAS  Google Scholar 

  11. Baier H, Bonhoeffer F (1992) Axon guidance by gradients of a target-derived component. Science 255:472–475

    Article  PubMed  CAS  Google Scholar 

  12. Rosentreter SM, Davenport RW, Löschinger J et al (1998) Response of retinal ganglion cell axons to striped linear gradients of repellent guidance molecules. J Neurobiol 37:541–562

    Article  PubMed  CAS  Google Scholar 

  13. von Philipsborn AC, Lang S, Bernard A et al (2006) Microcontact printing of axon guidance molecules for generation of graded patterns. Nat Protoc 1:1322–1328

    Article  Google Scholar 

  14. von Philipsborn AC, Lang S, Löschinger J et al (2006) Growth cone navigation in substrate-bound ephrin gradients. Development 133:2487–2495

    Article  Google Scholar 

  15. Prime KL, Whitesides GM (1991) Self-assembled organic monolayers: model systems for studying adsorption of proteins at surfaces. Science 252:1164–1167

    Article  PubMed  CAS  Google Scholar 

  16. Prime KL, Whitesides GM (1993) Adsorption of proteins onto surfaces containing end-attached oligo(ethyleneoxide): a model system using self-assembled monolayers. J Am Chem Soc 115:10714–10721

    Article  CAS  Google Scholar 

  17. Morhard F, Pipper J, Dahint R et al (2000) Immobilization of antibodies in micropatterns for cell detection by optical diffraction. Sens Actuators B Chem 70:232–242

    Article  CAS  Google Scholar 

  18. Kanda V, Kariuki JK, Harrison DJ et al (2004) Label-free reading of microarray-based immunoassays with surface plasmon resonance imaging. Anal Chem 76:7257–7262

    Article  PubMed  CAS  Google Scholar 

  19. Bietsch A, Michel B (2000) Conformal contact and pattern stability of stamps used for soft lithography. J Appl Phys 88:4310–4318

    Article  CAS  Google Scholar 

  20. David C, Hambach D (1999) Line width control using a defocused low voltage electron beam. Microelectron Eng 46:219–222

    Article  CAS  Google Scholar 

  21. O’Kane DF, Mittal KL (1974) Plasma cleaning of metal surfaces. J Vac Sci Technol 11:567–569

    Article  Google Scholar 

  22. Tien J, Xia Y, Whitesides GM (1998) Microcontact printing of SAMs. Thin Films 24:227–250

    CAS  Google Scholar 

  23. Xia Y, Whitesides GM (1998) Soft lithography. Angew Chem Int Ed 37:550–575

    Article  CAS  Google Scholar 

  24. Balmer TE, Schmid H, Stutz R et al (2005) Diffusion of alkanethiols in PDMS and its implications on microcontact printing (μCP). Langmuir 21:622–632

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the German Research Foundation, DFG (grant BA 1034/14-3). The authors thank Franco Weth for helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Fritz, M., Bastmeyer, M. (2013). Microcontact Printing of Substrate-Bound Protein Patterns for Cell and Tissue Culture. In: Zhou, R., Mei, L. (eds) Neural Development. Methods in Molecular Biology, vol 1018. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-444-9_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-444-9_23

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-443-2

  • Online ISBN: 978-1-62703-444-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics