Skip to main content

Transcranial Two-Photon Imaging of Synaptic Structures in the Cortex of Awake Head-Restrained Mice

  • Protocol
  • First Online:
Trinucleotide Repeat Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1010))

Abstract

Transcranial two-photon microscopy allows long-term imaging of neurons, glia, and vasculature in the intact cortex of living animals. So far, this technique has been primarily used to acquire images in anesthetized animals. Here, we describe a detailed protocol for high-resolution two-photon imaging of neuronal structures in the cortex of awake head-restrained mice. Surgery is done within 1 h in anesthetized mice. After animals recover from anesthesia, two-photon imaging can be performed multiple times over minutes to days, allowing longitudinal studies of synaptic plasticity and pathology without the complication induced by anesthesia reagents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Davalos D, Grutzendler J, Yang G et al (2005) ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci 8:752–758

    Article  PubMed  CAS  Google Scholar 

  2. Grutzendler J, Kasthuri N, Gan WB (2002) Long-term dendritic spine stability in the adult cortex. Nature 420:812–816

    Article  PubMed  CAS  Google Scholar 

  3. Majewska AK, Newton JR, Sur M (2006) Remodeling of synaptic structure in sensory cortical areas in vivo. J Neurosci 26:3021–3029

    Article  PubMed  CAS  Google Scholar 

  4. Nishiyama H, Fukaya M, Watanabe M et al (2007) Axonal motility and its modulation by activity are branch-type specific in the intact adult cerebellum. Neuron 56:472–487

    Article  PubMed  CAS  Google Scholar 

  5. Stosiek C, Garaschuk O, Holthoff K et al (2003) In vivo two-photon calcium imaging of neuronal networks. Proc Natl Acad Sci USA 100:7319–7324

    Article  PubMed  CAS  Google Scholar 

  6. Tsai J, Grutzendler J, Duff K et al (2004) Fibrillar amyloid deposition leads to local synaptic abnormalities and breakage of neuronal branches. Nat Neurosci 7:1181–1183

    Article  PubMed  CAS  Google Scholar 

  7. Xu HT, Pan F, Yang G et al (2007) Choice of cranial window type for in vivo imaging affects dendritic spine turnover in the cortex. Nat Neurosci 10:549–551

    Article  PubMed  CAS  Google Scholar 

  8. Yoder EJ, Kleinfeld D (2002) Cortical imaging through the intact mouse skull using two-photon excitation laser scanning microscopy. Microsc Res Tech 56:304–305

    Article  PubMed  Google Scholar 

  9. Zhang ZG, Zhang L, Ding G et al (2005) A model of mini-embolic stroke offers measurements of the neurovascular unit response in the living mouse. Stroke 36:2701–2704

    Article  PubMed  Google Scholar 

  10. Zuo Y, Lin A, Chang P et al (2005) Development of long-term dendritic spine stability in diverse regions of cerebral cortex. Neuron 46:181–189

    Article  PubMed  CAS  Google Scholar 

  11. Zuo Y, Yang G, Kwon E et al (2005) Long-term sensory deprivation prevents dendritic spine loss in primary somatosensory cortex. Nature 436:261–265

    Article  PubMed  CAS  Google Scholar 

  12. Kim JV, Kang SS, Dustin ML et al (2009) Myelomonocytic cell recruitment causes fatal CNS vascular injury during acute viral meningitis. Nature 457:191–195

    Article  PubMed  CAS  Google Scholar 

  13. Wake H, Moorhouse AJ, Jinno S et al (2009) Resting microglia directly monitor the functional state of synapses in vivo and determine the fate of ischemic terminals. J Neurosci 29:3974–3980

    Article  PubMed  CAS  Google Scholar 

  14. Haynes SE, Hollopeter G, Yang G et al (2006) The P2Y12 receptor regulates microglial activation by extracellular nucleotides. Nat Neurosci 9:1512–1519

    Article  PubMed  CAS  Google Scholar 

  15. Denk W, Strickler JH, Webb WW (1990) Two-photon laser scanning fluorescence microscopy. Science 248:73–76

    Article  PubMed  CAS  Google Scholar 

  16. Theer P, Hasan MT, Denk W (2003) Two-photon imaging to a depth of 1000 microm in living brains by use of a Ti:Al2O3 regenerative amplifier. Opt Lett 28:1022–1024

    Article  PubMed  CAS  Google Scholar 

  17. Wu SH, Arevalo JC, Sarti F et al (2009) Ankyrin Repeat-rich Membrane Spanning/Kidins220 protein regulates dendritic branching and spine stability in vivo. Dev Neurobiol 69:547–557

    Article  PubMed  CAS  Google Scholar 

  18. Yang G, Pan F, Gan WB (2009) Stably maintained dendritic spines are associated with lifelong memories. Nature 462:920–924

    Article  PubMed  CAS  Google Scholar 

  19. Pan F, Aldridge GM, Greenough WT et al (2010) Dendritic spine instability and insensitivity to modulation by sensory experience in a mouse model of fragile X syndrome. Proc Natl Acad Sci USA 107:17768–17773

    Article  PubMed  CAS  Google Scholar 

  20. Yang G, Pan F, Parkhurst CN et al (2010) Thinned-skull cranial window technique for long-term imaging of the cortex in live mice. Nat Protoc 5:201–208

    Article  PubMed  CAS  Google Scholar 

  21. Zhang S, Murphy TH (2007) Imaging the impact of cortical microcirculation on synaptic structure and sensory-evoked hemodynamic responses in vivo. PLoS Biol 5:e119

    Article  PubMed  Google Scholar 

  22. Yang G, Chang PC, Bekker A et al (2011) Transient effects of anesthetics on dendritic spines and filopodia in the living mouse cortex. Anesthesiology 115:718–726

    Article  PubMed  CAS  Google Scholar 

  23. Feng G, Mellor RH, Bernstein M et al (2000) Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron 28:41–51

    Article  PubMed  CAS  Google Scholar 

  24. Jung S, Aliberti J, Graemmel P et al (2000) Analysis of fractalkine receptor CX(3)CR1 function by targeted deletion and green fluorescent protein reporter gene insertion. Mol Cell Biol 20:4106–4114

    Article  PubMed  CAS  Google Scholar 

  25. Ferris CF, Stolberg T (2010) Imaging the immediate non-genomic effects of stress hormone on brain activity. Psychoneuroendocrinology 35:5–14

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from AFAR and the Alzheimer’s Association (NIRG-11-205362) to G.Y.; NIH (R01 NS047325) and the Alzheimer’s Association (IIRG) to W.B.G.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer New York

About this protocol

Cite this protocol

Yang, G., Pan, F., Chang, P.C., Gooden, F., Gan, WB. (2013). Transcranial Two-Photon Imaging of Synaptic Structures in the Cortex of Awake Head-Restrained Mice. In: Kohwi, Y., McMurray, C. (eds) Trinucleotide Repeat Protocols. Methods in Molecular Biology, vol 1010. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-411-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-411-1_3

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-410-4

  • Online ISBN: 978-1-62703-411-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics