Skip to main content

Novel Agents Targeting Oncogenic Pathways in Lymphoma

  • Chapter
  • First Online:
Lymphoma

Part of the book series: Current Clinical Oncology ((CCO,volume 43))

Abstract

With increasing number of new drugs and molecular targets, drug development continues to suffer from a high failure rate. The two major obstacles are unexpected toxicity and lack of antitumor efficacy in unselected patients. To increase response rates of new agents, it will be important to preselect patients based on predictive biomarkers. Furthermore, rather than developing drugs that target specific mutant or overexpressed oncogenic proteins, it is more efficient to group several proteins in “oncogenic pathways” that can be targeted with a variety of small molecules. This brief chapter will cover the most promising agents targeting oncogenic pathways under development for the treatment of lymphoma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Siegel R, Ward E, Brawley O, Jemal A. Cancer statistics, 2011: the impact of eliminating socioeconomic and racial disparities on premature cancer deaths. CA Cancer J Clin. 2011;61(4):212–36. doi:10.3322/caac.20121. Epub 2011 Jun 17. PMID:21685461.

    Article  PubMed  Google Scholar 

  2. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61(2):69–90. doi:10.3322/caac.20107. Epub 2011 Feb 4. Erratum in: CA Cancer J Clin. 2011;61(2):134. PMID:21296855.

    Article  PubMed  Google Scholar 

  3. Zelenetz AD, Abramson JS, Advani RH, Andreadis CB, Bartlett N, Bellam N, et al. Non-Hodgkin’s lymphomas. J Natl Compr Canc Netw. 2011;9(5):484–560. No abstract available. PMID:21550968.

    PubMed  Google Scholar 

  4. Younes A. Beyond chemotherapy: new agents for ­targeted treatment of lymphoma. Nat Rev Clin Oncol. 2011;8(2):85–96. doi:10.1038/nrclinonc.2010.189. Epub 2010 Dec 14. Review. Erratum in: Nat Rev Clin Oncol. 2011;8(3):124. PMID:21151205.

    Article  PubMed  CAS  Google Scholar 

  5. Alizadeh AA, Eisen MB, Davis RE, et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature. 2000;403:503–11.

    Article  PubMed  CAS  Google Scholar 

  6. Ihle NT, Powis G. Take your PIK: phosphatidylinositol 3-kinase inhibitors race through the clinic and toward cancer therapy. Mol Cancer Ther. 2009;8:1–9.

    Article  PubMed  CAS  Google Scholar 

  7. Franke TF. PI3K/Akt: getting it right matters. Oncogene. 2008;27:6473–88.

    Article  PubMed  CAS  Google Scholar 

  8. Engelman JA. Targeting PI3K signalling in cancer: opportunities, challenges and limitations. Nat Rev Cancer. 2009;9:550–62.

    Article  PubMed  CAS  Google Scholar 

  9. Jaiswal BS, Janakiraman V, Kljavin NM, et al. Somatic mutations in p85alpha promote tumorigenesis through class IA PI3K activation. Cancer Cell. 2009;16:463–74.

    Article  PubMed  CAS  Google Scholar 

  10. Martin-Berenjeno I, Vanhaesebroeck B. PI3K regulatory subunits lose control in cancer. Cancer Cell. 2009;16:449–50.

    Article  PubMed  CAS  Google Scholar 

  11. Georgakis GV, Yazbeck VY, Li Y, Younes A. Preclinical rationale for therapeutic targeting of mTOR by CC-I779 and rapamycin in Hodgkin lymphoma. ASCO Meet Abstr. 2006;24:10070.

    Google Scholar 

  12. Jucker M, Sudel K, Horn S, et al. Expression of a mutated form of the p85alpha regulatory subunit of phosphatidylinositol 3-kinase in a Hodgkin’s lymphoma-derived cell line (CO). Leukemia. 2002;16:894–901.

    Article  PubMed  CAS  Google Scholar 

  13. Morrison JA, Gulley ML, Pathmanathan R, Raab-Traub N. Differential signaling pathways are activated in the Epstein-Barr virus-associated malignancies nasopharyngeal carcinoma and Hodgkin lymphoma. Cancer Res. 2004;64:5251–60.

    Article  PubMed  CAS  Google Scholar 

  14. Nagel S, Scherr M, Quentmeier H, et al. HLXB9 activates IL6 in Hodgkin lymphoma cell lines and is regulated by PI3K signalling involving E2F3. Leukemia. 2005;19:841–6.

    Article  PubMed  CAS  Google Scholar 

  15. Renne C, Willenbrock K, Martin-Subero JI, et al. High expression of several tyrosine kinases and activation of the PI3K/AKT pathway in mediastinal large B cell lymphoma reveals further similarities to Hodgkin lymphoma. Leukemia. 2007;21:780–7.

    Article  PubMed  CAS  Google Scholar 

  16. Dutton A, Reynolds GM, Dawson CW, Young LS, Murray PG. Constitutive activation of phosphatidyl-inositide 3 kinase contributes to the survival of Hodgkin’s lymphoma cells through a mechanism involving Akt kinase and mTOR. J Pathol. 2005;205:498–506.

    Article  PubMed  CAS  Google Scholar 

  17. Gough NR. Focus Issue: demystifying mTOR signaling. Sci Signal. 2009;2:eg5.

    Article  PubMed  Google Scholar 

  18. Dancey J. mTOR signaling and drug development in cancer. Nat Rev Clin Oncol. 2010;7(4):209–19. doi:10.1038/nrclinonc.2010.21. Epub 2010 Mar 16. Review. PMID:20234352.

    Article  PubMed  CAS  Google Scholar 

  19. Thomson AW, Turnquist HR, Raimondi G. Immuno­regulatory functions of mTOR inhibition. Nat Rev Immunol. 2009;9:324–37.

    Article  PubMed  CAS  Google Scholar 

  20. Ma XM, Blenis J. Molecular mechanisms of mTOR-mediated translational control. Nat Rev Mol Cell Biol. 2009;10:307–18.

    Article  PubMed  Google Scholar 

  21. Younes A. Therapeutic activity of mTOR inhibitors in mantle cell lymphoma: clues but no clear answers. Autophagy. 2008;4(5):707–9. Epub 2008 May 6. Review. PMID:18469512.

    PubMed  CAS  Google Scholar 

  22. Zheng Y, Collins SL, Lutz MA, et al. A role for ­mammalian target of rapamycin in regulating T cell activation versus anergy. J Immunol. 2007;178:2163–70.

    PubMed  CAS  Google Scholar 

  23. Del Bufalo D, Ciuffreda L, Trisciuoglio D, et al. Antiangiogenic potential of the Mammalian target of rapamycin inhibitor temsirolimus. Cancer Res. 2006;66:5549–54.

    Article  PubMed  Google Scholar 

  24. Smith SM, Pro B, Cisneros A, et al. Activity of single agent temsirolimus (CCI-779) in non-mantle cell non-Hodgkin lymphoma subtypes. ASCO Meet Abstr. 2008;26:8514.

    Google Scholar 

  25. Witzig TE, Geyer SM, Ghobrial I, et al. Phase II trial of single-agent temsirolimus (CCI-779) for relapsed mantle cell lymphoma. J Clin Oncol. 2005;23:5347–56.

    Article  PubMed  CAS  Google Scholar 

  26. Hess G, Herbrecht R, Romaguera J, Verhoef G, Crump M, Gisselbrecht C, et al. Phase III study to evaluate temsirolimus compared with investigator’s choice therapy for the treatment of relapsed or refractory mantle cell lymphoma. J Clin Oncol. 2009;27(23):3822–9. doi:10.1200/JCO.2008.20.7977. Epub 2009 Jul 6. PMID:1958153.

    Article  PubMed  CAS  Google Scholar 

  27. Courtney KD, Corcoran RB, Engelman JA. The PI3K pathway as drug target in human cancer. J Clin Oncol. 2010;28:1075–83.

    Article  PubMed  CAS  Google Scholar 

  28. Zhao L, Vogt PK. Class I PI3K in oncogenic cellular transformation. Oncogene. 2008;27:5486–96.

    Article  PubMed  CAS  Google Scholar 

  29. Lannutti BJ, Meadows SA, Kashishian A, et al. CAL-101, an oral p110{delta} selective phosphatidylinositol-3-kinase (PI3K) inhibitor for the treatment of B cell malignancies inhibits PI3K signaling, cellular viability and protective signals of the microenvironment. Blood. 2009;114:286.

    Google Scholar 

  30. Flinn IW, Byrd JC, Furman RR, et al. Evidence of clinical activity in a phase 1 study of CAL-101, an oral P110{Delta} isoform-selective inhibitor of phosphatidylinositol 3-kinase, in patients with relapsed or refractory B-cell malignancies. Blood. 2009;114:922.

    Google Scholar 

  31. Chen L, Monti S, Juszczynski P, Daley J, Chen W, Witzig TE, et al. SYK-dependent tonic B-cell receptor signaling is a rational treatment target in diffuse large B-cell lymphoma. Blood. 2008;111(4):2230–7. Epub 2007 Nov 15. PMID:18006696.

    Article  PubMed  CAS  Google Scholar 

  32. Friedberg JW, Sharman J, Sweetenham J, et al. Inhibition of Syk with fostamatinib disodium has significant clinical activity in non Hodgkin’s lymphoma and chronic lymphocytic leukemia. Blood. 2010;115(13):2578–85. doi:10.1182/blood-2009-08-236471.

    Article  PubMed  CAS  Google Scholar 

  33. Pollyea DA, Smith S, Fowler N, et al. A phase I dose escalation study of the Btk inhibitor PCI-32765 in relapsed and refractory B cell non-Hodgkin lymphoma and use of a novel fluorescent probe pharmacodynamic assay. Blood. 2009;114:3713.

    Google Scholar 

  34. Murray PJ. The JAK-STAT signaling pathway: input and output integration. J Immunol. 2007;178:2623–9.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anas Younes MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Younes, A. (2013). Novel Agents Targeting Oncogenic Pathways in Lymphoma. In: Younes, A., Coiffier, B. (eds) Lymphoma. Current Clinical Oncology, vol 43. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-408-1_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-408-1_22

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-407-4

  • Online ISBN: 978-1-62703-408-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics