Skip to main content

Genetically Engineered Animal Models for In Vivo Target Identification and Validation in Oncology

  • Protocol
  • First Online:
Target Identification and Validation in Drug Discovery

Part of the book series: Methods in Molecular Biology ((MIMB,volume 986))

Abstract

In vitro approaches using human cancer cell lines aimed to identify and validate oncology targets, have pinpointed a number of key targets and signalling pathways which control cell growth and cell death. However, tumors are more than insular masses of proliferating cancer cells. Instead they are complex tissues composed of multiple distinct cell types that participate in homotypic and heterotypic interactions and depend upon each other for their growth. Therefore, many targets in oncology need to be validated in the context of the whole animal. This review provides an overview on how animal models can be generated and used for target identification and validation in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Walker I, Newell H (2009) Do molecularly targeted agents in oncology have reduced attrition rates? Nat Rev Drug Discov 8:15–16

    Article  PubMed  CAS  Google Scholar 

  2. Gupta GP, Massague J (2006) Cancer metastasis: building a framework. Cell 127:679–695

    Article  PubMed  CAS  Google Scholar 

  3. Singh M, Johnson L (2006) Using genetically engineered mouse models of cancer to aid drug development: an industry perspective. Clin Cancer Res 12:5312–5328

    Article  PubMed  CAS  Google Scholar 

  4. Richmond A, Su Y (2008) Mouse xenograft models vs GEM models for human cancer therapeutics. Dis Model Mech 1:78–82

    Article  PubMed  Google Scholar 

  5. Heyer J, Kwong LN, Lowe SW et al (2010) Non-germline genetically engineered mouse models for translational cancer research. Nat Rev Cancer 10:470–480

    Article  PubMed  CAS  Google Scholar 

  6. Forbes SA, Bhamra G, Bamford S et al (2008) The catalogue of somatic mutations in cancer (COSMIC). Curr Protoc Hum Genet Chapter 10:Unit 10.11

    Google Scholar 

  7. Rago C, Vogelstein B, Bunz F (2007) Genetic knockouts and knockins in human somatic cells. Nat Protoc 2:2734–2746

    Article  PubMed  CAS  Google Scholar 

  8. Sandy P, Ventura A, Jacks T (2005) Mammalian RNAi: a practical guide. Biotechniques 39:215–224

    Article  PubMed  CAS  Google Scholar 

  9. Futami K, Kumagai E, Makino H et al (2008) Anticancer activity of RecQL1 helicase siRNA in mouse xenograft models. Cancer Sci 99:1227–1236

    Article  PubMed  CAS  Google Scholar 

  10. Elez R, Piiper A, Kronenberger B et al (2003) Tumor regression by combination antisense therapy against Plk1 and Bcl-2. Oncogene 22:69–80

    Article  PubMed  CAS  Google Scholar 

  11. Verma UN, Surabhi RM, Schmaltieg A et al (2003) Small interfering RNAs directed against beta-catenin inhibit the in vitro and in vivo growth of colon cancer cells. Clin Cancer Res 9:1291–1300

    PubMed  CAS  Google Scholar 

  12. Oh BY, Lee RA, Kim KH (2011) siRNA targeting Livin decreases tumor in a xenograft model for colon cancer. World J Gastroenterol 17:2563–2571

    Article  PubMed  CAS  Google Scholar 

  13. Oliveira S, Storm G, Schiffelers RM (2006) Targeted delivery of siRNA. J Biomed Biotechnol 2006:63675

    Article  PubMed  Google Scholar 

  14. Lee-Hoeflich ST, Crocker L, Yao E et al (2008) A central role for HER3 in HER2-amplified breast cancer: implications for targeted therapy. Cancer Res 68:5878–5887

    Article  PubMed  CAS  Google Scholar 

  15. Barres V, Ouellet V, Lafontaine J et al (2010) An essential role for Ran GTPase in epithelial ovarian cancer cell survival. Mol Cancer 9:272

    Article  PubMed  Google Scholar 

  16. Sala G, Dituri F, Raimondi C et al (2008) Phospholipase Cgamma1 is required for metastasis development and progression. Cancer Res 68:10187–10196

    Article  PubMed  CAS  Google Scholar 

  17. Mazzoletti M, Texidó G. (2013) In vivo target validation by inducible RNAi in human xenograft mouse models, methods in molecular biology. Target identification and validation in drug discovery. Eds. Jürgen Moll and Riccardo Colombo.

    Google Scholar 

  18. Costantini F, Lacy E (1981) Introduction of a rabbit beta-globin gene into the mouse germ line. Nature 294:92–94

    Article  PubMed  CAS  Google Scholar 

  19. Hanahan D, Wagner EF, Palmiter RD (2007) The origins of oncomice: a history of the first transgenic mice genetically engineered to develop cancer. Genes Dev 21:2258–2270

    Article  PubMed  CAS  Google Scholar 

  20. Capecchi MR (1989) Altering the genome by homologous recombination. Science 244:1288–1292

    Article  PubMed  CAS  Google Scholar 

  21. Taneja P, Zhu S, Maglic D et al (2011) Transgenic and knockout mice models to reveal the functions of tumor suppressor genes. Clin Med Insights Oncol 5:235–257

    PubMed  CAS  Google Scholar 

  22. Nagy A, Gertsenstein M, Vintersten K et al (2003) Manipulating the mouse embryo—a laboratory manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  23. Hofker MH, van Deursen J (2002) Transgenic mouse: methods and protocols, methods in molecular biology, transgenic mouse: methods and protocols, vol 209. Humana Press, New Jersey

    Book  Google Scholar 

  24. Pease S, Saunders TL (2011) Advanced protocols for animal transgenesis: an ISTT manual. Springer Protocols, Springer-Verlag, Berlin, Heidelberg

    Book  Google Scholar 

  25. Sauer B, Henderson N (1988) Site-specific DNA recombination in mammalian cells by the Cre recombinase of bacteriophage P1. Proc Natl Acad Sci USA 85:5166–5170

    Article  PubMed  CAS  Google Scholar 

  26. Jackson EL, Willis N, Mercer K et al (2001) Analysis of lung tumor initiation and progression using conditional expression of oncogenic K-ras. Genes Dev 15:3243–3248

    Article  PubMed  CAS  Google Scholar 

  27. DuPage M, Dooley AL, Jacks T (2009) Conditional mouse lung cancer models using adenoviral or lentiviral delivery of Cre recombinase. Nat Protoc 4:1064–1072

    Article  PubMed  CAS  Google Scholar 

  28. Zhu XD, Sadowski PD (1995) Cleavage-dependent ligation by the FLP recombinase. Characterization of a mutant FLP protein with an alteration in a catalytic amino acid. J Biol Chem 270:23044–23054

    Article  PubMed  CAS  Google Scholar 

  29. Kwan KM (2002) Conditional alleles in mice: practical considerations for tissue-specific knockouts. Genesis 32:49–62

    Article  PubMed  CAS  Google Scholar 

  30. Lee CL, Moding EJ, Huang X et al (2012) Generation of primary tumors with Flp recombinase in FRT-flanked p53 mice. Dis Model Mech. doi:10.1242/dmm.009084

  31. Leone DP, Genoud S, Atanasoski S et al (2003) Tamoxifen-inducible glia-specific Cre mice for somatic mutagenesis in oligodendrocytes and Schwann cells. Mol Cell Neurosci 22:430–440

    Article  PubMed  CAS  Google Scholar 

  32. Hillen W, Berens C (1994) Mechanisms underlying expression of Tn10 encoded tetracycline resistance. Annu Rev Microbiol 48:345–369

    Article  PubMed  CAS  Google Scholar 

  33. Montoliu L (2011) Global resources: including gene trapped ES cell clones—is your gene already knocked out? In: Pease S, Saunders TL (eds) Advanced protocols for animal transgenesis. Springer Protocols, Springer-Verlag, Berlin, Heidelberg, pp 25–42

    Chapter  Google Scholar 

  34. Schonig K, Bujard H, Gossen M (2010) The power of reversibility regulating gene activities via tetracycline-controlled transcription. Methods Enzymol 477:429–453

    Article  PubMed  Google Scholar 

  35. Cawthorne C, Swindell R, Stratford IJ et al (2007) Comparison of doxycycline delivery methods for Tet-inducible gene expression in a subcutaneous xenograft model. J Biomol Tech 18:120–123

    PubMed  Google Scholar 

  36. Marks C (2009) Mouse models of human cancers consortium (MMHCC) from the NCI. Dis Model Mech 2:111

    Article  PubMed  Google Scholar 

  37. Uren AG, Kool J, Berns A et al (2005) Retroviral insertional mutagenesis: past, present and future. Oncogene 24:7656–7672

    Article  PubMed  CAS  Google Scholar 

  38. Collier LS, Carlson CM, Ravimohan S et al (2005) Cancer gene discovery in solid tumours using transposon-based somatic mutagenesis in the mouse. Nature 436:272–276

    Article  PubMed  CAS  Google Scholar 

  39. Kool J, Berns A (2009) High-throughput insertional mutagenesis screens in mice to identify oncogenic networks. Nat Rev Cancer 9:389–399

    Article  PubMed  CAS  Google Scholar 

  40. Curcio MJ, Derbyshire KM (2003) The outs and ins of transposition: from mu to kangaroo. Nat Rev Mol Cell Biol 4:865–877

    Article  PubMed  CAS  Google Scholar 

  41. Weiser KC, Justice MJ (2005) Cancer biology: sleeping beauty awakens. Nature 436:184–186

    Article  PubMed  CAS  Google Scholar 

  42. Ivics Z, Hackett PB, Plasterk RH et al (1997) Molecular reconstruction of Sleeping Beauty, a Tc1-like transposon from fish, and its transposition in human cells. Cell 91:501–510

    Article  PubMed  CAS  Google Scholar 

  43. Ding S, Wu X, Li G et al (2005) Efficient transposition of the piggyBac (PB) transposon in mammalian cells and mice. Cell 122:473–483

    Article  PubMed  CAS  Google Scholar 

  44. Copeland NG, Jenkins NA (2010) Harnessing transposons for cancer gene discovery. Nat Rev Cancer 10:696–706

    Article  PubMed  CAS  Google Scholar 

  45. Dupuy AJ, Rogers LM, Kim J et al (2009) A modified sleeping beauty transposon system that can be used to model a wide variety of human cancers in mice. Cancer Res 69:8150–8156

    Article  PubMed  CAS  Google Scholar 

  46. Yusa K, Zhou L, Li MA et al (2011) A hyperactive piggyBac transposase for mammalian applications. Proc Natl Acad Sci U S A 108:1531–1536

    Article  PubMed  CAS  Google Scholar 

  47. Bender AM, Collier LS, Rodriguez FJ et al (2010) Sleeping beauty-mediated somatic mutagenesis implicates CSF1 in the formation of high-grade astrocytomas. Cancer Res 70:3557–3565

    Article  PubMed  CAS  Google Scholar 

  48. Coniglio SJ, Eugenin E, Dobrenis K et al (2012) Microglial stimulation of glioblastoma invasion involves EGFR and CSF-1R signaling. Mol Med. doi:10.2119/molmed.2011.00217

  49. March HN, Rust AG, Wright NA et al (2011) Insertional mutagenesis identifies multiple networks of cooperating genes driving intestinal tumorigenesis. Nat Genet 43:1202–1209

    Article  PubMed  CAS  Google Scholar 

  50. Kleinhammer A, Wurst W, Kuhn R (2011) Constitutive and conditional RNAi transgenesis in mice. Methods 53:430–436

    Article  PubMed  CAS  Google Scholar 

  51. Kissil JL, Walmsley MJ, Hanlon L et al (2007) Requirement for Rac1 in a K-ras induced lung cancer in the mouse. Cancer Res 67:8089–8094

    Article  PubMed  CAS  Google Scholar 

  52. Meylan E, Dooley AL, Feldser DM et al (2009) Requirement for NF-kappaB signalling in a mouse model of lung adenocarcinoma. Nature 462:104–107

    Article  PubMed  CAS  Google Scholar 

  53. Xue W, Meylan E, Oliver TG et al (2011) Response and resistance to NF-kappaB inhibitors in mouse models of lung adenocarcinoma. Cancer Discov 1:236–247

    Article  PubMed  CAS  Google Scholar 

  54. Puyol M, Martin A, Dubus P et al (2010) A synthetic lethal interaction between K-Ras oncogenes and Cdk4 unveils a therapeutic strategy for non-small cell lung carcinoma. Cancer Cell 18:63–73

    Article  PubMed  CAS  Google Scholar 

  55. Degrassi A, Russo M, Nanni C et al (2010) Efficacy of PHA-848125, a cyclin-dependent kinase inhibitor, on the K-Ras(G12D)LA2 lung adenocarcinoma transgenic mouse model: evaluation by multimodality imaging. Mol Cancer Ther 9:673–681

    Article  PubMed  CAS  Google Scholar 

  56. Chin L, Tam A, Pomerantz J et al (1999) Essential role for oncogenic Ras in tumour maintenance. Nature 400:468–472

    Article  PubMed  CAS  Google Scholar 

  57. Felsher DW, Bishop JM (1999) Reversible tumorigenesis by MYC in hematopoietic lineages. Mol Cell 4:199–207

    Article  PubMed  CAS  Google Scholar 

  58. Shachaf CM, Kopelman AM, Arvanitis C et al (2004) MYC inactivation uncovers pluripotent differentiation and tumour dormancy in hepatocellular cancer. Nature 431:1112–1117

    Article  PubMed  CAS  Google Scholar 

  59. Vidal M, Cagan RL (2006) Drosophila models for cancer research. Curr Opin Genet Dev 16:10–16

    Article  PubMed  CAS  Google Scholar 

  60. Liu S, Leach SD (2011) Zebrafish models for cancer. Annu Rev Pathol 6:71–93

    Article  PubMed  CAS  Google Scholar 

  61. Kango-Singh M, Singh A (2009) Regulation of organ size: insights from the Drosophila Hippo signaling pathway. Dev Dyn 238:1627–1637

    Article  PubMed  CAS  Google Scholar 

  62. Staley BK, Irvine KD (2012) Hippo signaling in Drosophila: recent advances and insights. Dev Dyn 241:3–15

    Article  PubMed  CAS  Google Scholar 

  63. Moon RT, Bowerman B, Boutros M et al (2002) The promise and perils of Wnt signaling through beta-catenin. Science 296:1644–1646

    Article  PubMed  CAS  Google Scholar 

  64. Reiter LT, Potocki L, Chien S et al (2001) A systematic analysis of human disease-associated gene sequences in Drosophila melanogaster. Genome Res 11:1114–1125

    Article  PubMed  CAS  Google Scholar 

  65. Chien S, Reiter LT, Bier E et al (2002) Homophila: human disease gene cognates in Drosophila. Nucleic Acids Res 30:149–151

    Article  PubMed  CAS  Google Scholar 

  66. Caussinus E, Gonzalez C (2005) Induction of tumor growth by altered stem-cell asymmetric division in Drosophila melanogaster. Nat Genet 37:1125–1129

    Article  PubMed  CAS  Google Scholar 

  67. Royer C, Lu X (2011) Epithelial cell polarity: a major gatekeeper against cancer? Cell Death Differ 18:1470–1477

    Article  PubMed  CAS  Google Scholar 

  68. Blair SS (2003) Developmental biology: boundary lines. Nature 424:379–381

    Article  PubMed  CAS  Google Scholar 

  69. Brumby AM, Richardson HE (2005) Using Drosophila melanogaster to map human cancer pathways. Nat Rev Cancer 5:626–639

    Article  PubMed  CAS  Google Scholar 

  70. Brand AH, Perrimon N (1993) Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118:401–415

    PubMed  CAS  Google Scholar 

  71. Wang H, Chattopadhyay A, Li Z et al (2010) Rapid identification of heterozygous mutations in Drosophila melanogaster using genomic capture sequencing. Genome Res 20:981–988

    Article  PubMed  CAS  Google Scholar 

  72. Adams MD, Celniker SE, Holt RA et al (2000) The genome sequence of Drosophila melanogaster. Science 287:2185–2195

    Article  PubMed  Google Scholar 

  73. Boutros M, Perrimon N (2000) Drosophila genome takes flight. Nat Cell Biol 2:E53–E54

    Article  PubMed  CAS  Google Scholar 

  74. Carroll PM, Dougherty B, Ross-Macdonald P et al (2003) Model systems in drug discovery: chemical genetics meets genomics. Pharmacol Ther 99:183–220

    Article  PubMed  CAS  Google Scholar 

  75. O’Hare K, Rubin GM (1983) Structures of P transposable elements and their sites of insertion and excision in the Drosophila melanogaster genome. Cell 34:25–35

    Article  PubMed  Google Scholar 

  76. Rorth P (1996) A modular misexpression screen in Drosophila detecting tissue-specific phenotypes. Proc Natl Acad Sci USA 93:12418–12422

    Article  PubMed  CAS  Google Scholar 

  77. Duffy JB (2002) GAL4 system in Drosophila: a fly geneticist’s Swiss army knife. Genesis 34:1–15

    Article  PubMed  CAS  Google Scholar 

  78. Dietzl G, Chen D, Schnorrer F et al (2007) A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila. Nature 448:151–156

    Article  PubMed  CAS  Google Scholar 

  79. Lee T, Luo L (1999) Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. Neuron 22:451–461

    Article  PubMed  CAS  Google Scholar 

  80. Lue NF, Chasman DI, Buchman AR et al (1987) Interaction of GAL4 and GAL80 gene regulatory proteins in vitro. Mol Cell Biol 7:3446–3451

    PubMed  CAS  Google Scholar 

  81. Willecke M, Toggweiler J, Basler K (2011) Loss of PI3K blocks cell-cycle progression in a Drosophila tumor model. Oncogene 30:4067–4074

    Article  PubMed  CAS  Google Scholar 

  82. Miles WO, Dyson NJ, Walker JA (2011) Modeling tumor invasion and metastasis in Drosophila. Dis Model Mech 4:753–761

    Article  PubMed  CAS  Google Scholar 

  83. Gonzalez C (2007) Spindle orientation, asymmetric division and tumour suppression in Drosophila stem cells. Nat Rev Genet 8:462–472

    Article  PubMed  CAS  Google Scholar 

  84. Zhou Y, Rideout WM 3rd, Zi T et al (2010) Chimeric mouse tumor models reveal differences in pathway activation between ERBB family- and KRAS-dependent lung adenocarcinomas. Nat Biotechnol 28:71–78

    Article  PubMed  CAS  Google Scholar 

  85. Huijbers IJ, Krimpenfort P, Berns A et al (2011) Rapid validation of cancer genes in chimeras derived from established genetically engineered mouse models. Bioessays 33:701–710

    Article  PubMed  CAS  Google Scholar 

  86. Isalan M (2011) Zinc-finger nucleases: how to play two good hands. Nat Methods 9:32–34

    Article  PubMed  Google Scholar 

  87. Miller JC, Tan S, Qiao G et al (2011) A TALE nuclease architecture for efficient genome editing. Nat Biotechnol 29:143–148

    Article  PubMed  CAS  Google Scholar 

  88. McMahon MA, Rahdar M, Porteus M (2012) Gene editing: not just for translation anymore. Nat Methods 9:28–31

    Article  CAS  Google Scholar 

  89. Zhang F, Cong L, Lodato S et al (2011) Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription. Nat Biotechnol 29:149–153

    Article  PubMed  Google Scholar 

  90. Hockemeyer D, Wang H, Kiani S et al (2011) Genetic engineering of human pluripotent cells using TALE nucleases. Nat Biotechnol 29:731–734

    Article  PubMed  CAS  Google Scholar 

  91. Editorial (2012) Method of the year 2011. Nat Methods 9:1

    Google Scholar 

  92. Barker M (2012) Gene-editing nucleases. Nat Methods 9:23–26

    Article  Google Scholar 

  93. Tesson L, Usal C, Menoret S et al (2011) Knockout rats generated by embryo microinjection of TALENs. Nat Biotechnol 29:695–696

    Article  PubMed  CAS  Google Scholar 

  94. Sander JD, Cade L, Khayter C et al (2011) Targeted gene disruption in somatic zebrafish cells using engineered TALENs. Nat Biotechnol 29:697–698

    Article  PubMed  CAS  Google Scholar 

  95. Weiss WA, Taylor SS, Shokat KM (2007) Recognizing and exploiting differences between RNAi and small-molecule inhibitors. Nat Chem Biol 3:739–744

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 SpringerScience+Business Media New York

About this protocol

Cite this protocol

Texidó, G. (2013). Genetically Engineered Animal Models for In Vivo Target Identification and Validation in Oncology. In: Moll, J., Colombo, R. (eds) Target Identification and Validation in Drug Discovery. Methods in Molecular Biology, vol 986. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-311-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-311-4_18

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-310-7

  • Online ISBN: 978-1-62703-311-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics