Skip to main content

Computational Tools for Guided Discovery and Engineering of Metabolic Pathways

  • Protocol
  • First Online:
Systems Metabolic Engineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 985))

Abstract

With a high demand for increasingly diverse chemicals, as well as sustainable synthesis for many existing chemicals, the chemical industry is increasingly looking to biosynthesis. The majority of biosynthesis examples of useful chemicals are either native metabolites made by an organism or the heterologous expression of known metabolic pathways into a more amenable host. For chemicals that no known biosynthetic route exists, engineers are increasingly relying on automated computational algorithms, as described here, to identify potential metabolic pathways. In this chapter, we review a broad range of approaches to predict novel metabolic pathways. Broadly, these can rely on biochemical databases to assemble known reactions into a new pathway or rely on generalized biochemical rules to predict unobserved enzymatic reactions that are likely feasible. Many programs are freely available and immediately useable by non-computationally experienced scientists.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shen CR, Liao JC (2008) Metabolic engineering of Escherichia coli for 1-butanol and 1-propanol production via the keto-acid pathways. Metab Eng 10:312–320

    Article  CAS  Google Scholar 

  2. Yim H, Haselbeck R, Niu W, Pujol-Baxley C, Burgard A, Boldt J, Khandurina J, Trawick JD, Osterhout RE, Stephen R, Estadilla J, Teisan S, Schreyer HB, Andrae S, Yang TH, Lee SY, Burk MJ, Van Dien S (2011) Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol. Nat Chem Biol 7:445–452

    Article  CAS  Google Scholar 

  3. Kind S, Jeong WK, Schroder H, Wittmann C (2010) Systems-wide metabolic pathway engineering in Corynebacterium glutamicum for bio-based production of diaminopentane. Metab Eng 12:341–351

    Article  CAS  Google Scholar 

  4. Trantas E, Panopoulos N, Ververidis F (2009) Metabolic engineering of the complete pathway leading to heterologous biosynthesis of various flavonoids and stilbenoids in Saccharomyces cerevisiae. Metab Eng 11:355–366

    Article  CAS  Google Scholar 

  5. Ajikumar PK, Xiao WH, Tyo KE, Wang Y, Simeon F, Leonard E, Mucha O, Phon TH, Pfeifer B, Stephanopoulos G (2010) Isoprenoid pathway optimization for Taxol precursor overproduction in Escherichia coli. Science 330:70–74

    Article  CAS  Google Scholar 

  6. Ro DK, Paradise EM, Ouellet M, Fisher KJ, Newman KL, Ndungu JM, Ho KA, Eachus RA, Ham TS, Kirby J, Chang MC, Withers ST, Shiba Y, Sarpong R, Keasling JD (2006) Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440:940–943

    Article  CAS  Google Scholar 

  7. Keasling JD (2012) Synthetic biology and the development of tools for metabolic engineering. Metab Eng 14:189–195

    Article  CAS  Google Scholar 

  8. Stephanopoulos G, Stafford DE (2002) Metabolic engineering: a new frontier of chemical reaction engineering. Chem Eng Sci 57:2595–2602

    Article  CAS  Google Scholar 

  9. Pennisi E (2005) How will big pictures emerge from a sea of biological data. Science 309:94

    Article  CAS  Google Scholar 

  10. Philippi S, Kohler J (2006) Addressing the problems with life-science databases for traditional uses and systems biology. Nat Rev Genet 7:482–488

    Article  CAS  Google Scholar 

  11. Copeland WB, Bartley BA, Chandran D, Galdzicki M, Kim KH, Sleight SC, Maranas CD, Sauro HM (2012) Computational tools for metabolic engineering. Metab Eng 14:270–280

    Article  CAS  Google Scholar 

  12. Medema MH, van Raaphorst R, Takano E, Breitling R (2012) Computational tools for the synthetic design of biochemical pathways. Nat Rev Microbiol 10:191–202

    Article  CAS  Google Scholar 

  13. Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M (2012) KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res 40:D109–D114

    Article  CAS  Google Scholar 

  14. Kanehisa M, Goto S (2000) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30

    Article  CAS  Google Scholar 

  15. Hatzimanikatis V, Li C, Ionita JA, Henry CS, Jankowski MD, Broadbelt LJ (2005) Exploring the diversity of complex metabolic networks. Bioinformatics 21:1603–1609

    Article  CAS  Google Scholar 

  16. Jankowski MD, Henry CS, Broadbelt LJ, Hatzimanikatis V (2008) Group contribution method for thermodynamic analysis of complex metabolic networks. Biophys J 95:1487–1499

    Article  CAS  Google Scholar 

  17. Henry CS, Broadbelt LJ, Hatzimanikatis V (2007) Thermodynamics-based metabolic flux analysis. Biophys J 92:1792–1805

    Article  CAS  Google Scholar 

  18. Henry CS, Broadbelt LJ, Hatzimanikatis V (2010) Discovery and analysis of novel metabolic pathways for the biosynthesis of industrial chemicals: 3-hydroxypropanoate. Biotechnol Bioeng 106:462–473

    CAS  Google Scholar 

  19. Finley SD, Broadbelt LJ, Hatzimanikatis V (2010) In silico feasibility of novel biodegradation pathways for 1,2,4-trichlorobenzene. BMC Syst Biol 4:7

    Article  Google Scholar 

  20. Wu D, Wang Q, Assary RS, Broadbelt LJ, Krilov G (2011) A computational approach to design and evaluate enzymatic reaction pathways: application to 1-butanol production from pyruvate. J Chem Inf Model 51:1634–1647

    Article  CAS  Google Scholar 

  21. Cho A, Yun H, Park JH, Lee SY, Park S (2010) Prediction of novel synthetic pathways for the production of desired chemicals. BMC Syst Biol 4:1–16

    Google Scholar 

  22. Moriya Y, Shigemizu D, Hattori M, Tokimatsu T, Kotera M, Goto S, Kanehisa M (2010) PathPred: an enzyme-catalyzed metabolic pathway prediction server. Nucleic Acids Res 38:W138–W143

    Article  CAS  Google Scholar 

  23. Kotera M, Okuno Y, Hattori M, Goto S, Kanehisa M (2004) Computational assignment of the EC numbers for genomic-scale analysis of enzymatic reactions. J Am Chem Soc 126:16487–16498

    Article  CAS  Google Scholar 

  24. Oh M, Yamada T, Hattori M, Goto S, Kanehisa M (2007) Systematic analysis of enzyme-catalyzed reaction patterns and prediction of microbial biodegradation pathways. J Chem Inf Model 47:1702–1712

    Article  CAS  Google Scholar 

  25. Oh M, Yamada T, Hattori M, Goto S, Kanehisa M (2007) Systematic analysis of enzyme-catalyzed reaction patterns and prediction of microbial biodegradation pathways. J Chem Inf Model 47:1702–1712

    Article  CAS  Google Scholar 

  26. Tokimatsu T, Kotera M, Goto S, Kanehisa M (2011) KEGG and GenomeNet resources for predicting protein function from omics data including KEGG PLANT resource. Protein Function Prediction for Omics Era, 271–288

    Google Scholar 

  27. Hou BK, Ellis LBM, Wackett LP (2004) Encoding microbial metabolic logic: predicting biodegradation. J Ind Microbiol Biotechnol 31:261–272

    Article  CAS  Google Scholar 

  28. Ellis L, Wackett L (2012) Use of the University of Minnesota biocatalysis/biodegradation database for study of microbial degradation. Microb Inform Exp 2:1

    Article  Google Scholar 

  29. Fenner K, Gao J, Kramer S, Ellis L, Wackett L (2008) Data-driven extraction of relative reasoning rules to limit combinatorial explosion in biodegradation pathway prediction. Bioinformatics 24:2079–2085

    Article  CAS  Google Scholar 

  30. Gao JF, Ellis LBM, Wackett LP (2010) The University of Minnesota biocatalysis/biodegradation database: improving public access. Nucleic Acids Res 38:D488–D491

    Article  CAS  Google Scholar 

  31. Caspi R, Foerster H, Fulcher CA, Hopkinson R, Ingraham J, Kaipa P, Krummenacker M, Paley S, Pick J, Rhee SY, Tissier C, Zhang PF, Karp PD (2006) MetaCyc: a multiorganism database of metabolic pathways and enzymes. Nucleic Acids Res 34:D511–D516

    Article  CAS  Google Scholar 

  32. Ellis LBM, Hou BK, Kang WJ, Wackett LP (2003) The University of Minnesota biocatalysis/biodegradation database: post-genomic data mining. Nucleic Acids Res 31:262–265

    Article  CAS  Google Scholar 

  33. Feist AM, Henry CS, Reed JL, Krummenacker M, Joyce AR, Karp PD, Broadbelt LJ, Hatzimanikatis V, Palsson BO (2007) A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information. Mol Syst Biol 3:1–18

    Google Scholar 

  34. Reif JH (1985) Depth-1st search is inherently sequential. Inform Process Lett 20:229–234

    Article  Google Scholar 

  35. Yousofshahi M, Lee K, Hassoun S (2011) Probabilistic pathway construction. Metab Eng 13:435–444

    Article  CAS  Google Scholar 

  36. Rodrigo G, Carrera J, Prather KJ, Jaramillo A (2008) DESHARKY: automatic design of metabolic pathways for optimal cell growth. Bioinformatics 24:2554–2556

    Article  CAS  Google Scholar 

  37. Papoutsakis ET (1984) Equations and calculations for fermentations of butyric-acid bacteria. Biotechnol Bioeng 26:174–187

    Article  CAS  Google Scholar 

  38. Carrera J, Rodrigo G, Singh V, Kirov B, Jaramillo A (2011) Empirical model and in vivo characterization of the bacterial response to synthetic gene expression show that ribosome allocation limits growth rate. Biotechnol J 6:773–783

    Article  CAS  Google Scholar 

  39. Arita M (2000) Metabolic reconstruction using shortest paths. Simulat Pract Theor 8:109–125

    Article  Google Scholar 

  40. Pitkanen E, Jouhten P, Rousu J (2009) Inferring branching pathways in genome-scale metabolic networks. BMC Syst Biol 3:103

    Article  Google Scholar 

  41. McShan DC, Rao S, Shah I (2003) PathMiner: predicting metabolic pathways by heuristic search. Bioinformatics 19:1692–1698

    Article  CAS  Google Scholar 

  42. Blum T, Kohlbacher O (2008) MetaRoute: fast search for relevant metabolic routes for interactive network navigation and visualization. Bioinformatics 24:2108–2109

    Article  CAS  Google Scholar 

  43. Jouhten P, Pitkanen E, Pakula T, Saloheimo M, Penttila M, Maaheimo H (2009) (13)C-metabolic flux ratio and novel carbon path analyses confirmed that Trichoderma reesei uses primarily the respirative pathway also on the preferred carbon source glucose. BMC Syst Biol 3:1–16

    Google Scholar 

  44. McShan D, Shah I (2005) Heuristic search for metabolic engineering: de novo synthesis of vanillin. Comput Chem Eng 29:499–507

    Article  CAS  Google Scholar 

  45. Keseler IM, Collado-Vides J, Santos-Zavaleta A, Peralta-Gil M, Gama-Castro S, Muniz-Rascado L, Bonavides-Martinez C, Paley S, Krummenacker M, Altman T, Kaipa P, Spaulding A, Pacheco J, Latendresse M, Fulcher C, Sarker M, Shearer AG, Mackie A, Paulsen I, Gunsalus RP, Karp PD (2011) EcoCyc: a comprehensive database of Escherichia coli biology. Nucleic Acids Res 39:D583–D590

    Article  Google Scholar 

  46. Blum T, Kohlbacher O (2008) Using atom mapping rules for an improved detection of relevant routes in weighted metabolic networks. J Comput Biol 15:565–576

    Article  CAS  Google Scholar 

  47. Pharkya P, Burgard AP, Maranas CD (2004) OptStrain: a computational framework for redesign of microbial production systems. Genome Res 14:2367–2376

    Article  CAS  Google Scholar 

  48. Fell DA, Small JR (1986) Fat synthesis in adipose-tissue—an examination of stoichiometric constraints. Biochem J 238:781–786

    CAS  Google Scholar 

  49. Burgard AP, Pharkya P, Maranas CD (2003) OptKnock: a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization. Biotechnol Bioeng 84:647–657

    Article  CAS  Google Scholar 

  50. Burgard AP, Maranas CD (2001) Probing the performance limits of the Escherichia coli metabolic network subject to gene additions or deletions. Biotechnol Bioeng 74:364–375

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keith Tyo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Moura, M., Broadbelt, L., Tyo, K. (2013). Computational Tools for Guided Discovery and Engineering of Metabolic Pathways. In: Alper, H. (eds) Systems Metabolic Engineering. Methods in Molecular Biology, vol 985. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-299-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-299-5_8

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-298-8

  • Online ISBN: 978-1-62703-299-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics