Skip to main content

Biomarkers of Cell Senescence Assessed by Imaging Cytometry

  • Protocol
  • First Online:
Cell Senescence

Part of the book series: Methods in Molecular Biology ((MIMB,volume 965))

Abstract

The characteristic features of senescent cells such as their “flattened” appearance, enlarged nuclei and low saturation density at the plateau phase of cell growth, can be conveniently measured by image-assisted cytometry such as provided by a laser scanning cytometer (LSC). The “flattening” of senescent cells is reflected by a decline in local density of DNA-associated staining with 4,6-diamidino-2-phenylindole (DAPI) and is paralleled by an increase in nuclear area. Thus, the ratio of the maximal intensity of DAPI fluorescence per nucleus to the nuclear area provides a very sensitive morphometric biomarker of “depth” of senescence, which progressively declines during senescence induction. Also recorded is cellular DNA content revealing cell cycle phase, as well as the saturation cell density at plateau phase of growth, which is dramatically decreased in cultures of senescent cells. Concurrent immunocytochemical analysis of expression of p21WAF1, p16INK4a, or p27KIP1 cyclin kinase inhibitors provides additional markers of senescence. These biomarker indices can be expressed in quantitative terms (“senescence indices”) as a fraction of the same markers of the exponentially growing cells in control cultures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hayflick L (1965) The limited in vitro lifetime of human diploid cell strains. Exp Cell Res 37:614–636

    Article  PubMed  CAS  Google Scholar 

  2. Harley CB, Futcher AB, Greider CW (1990) Telomeres shorten during ageing of human fibroblasts. Nature 345:458–460

    Article  PubMed  CAS  Google Scholar 

  3. Kuilman T, Michaloglou C, Mooi WJ, Peeper DS (2010) The essence of senescence. Genes Dev 24:2463–2479

    Article  PubMed  CAS  Google Scholar 

  4. Parrinello S, Samper E, Krtolica A, Goldstein J, Melov S, Campisi J (2003) Oxygen sensitivity severely limits the replicative lifespan of murine fibroblasts. Nat Cell Biol 5:741–747

    Article  PubMed  CAS  Google Scholar 

  5. Sherr CJ, DePinho RA (2000) Cellular senescence: mitotic clock or culture shock? Cell 102:407–410

    Article  PubMed  CAS  Google Scholar 

  6. Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW (1997) Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88:593–602

    Article  PubMed  CAS  Google Scholar 

  7. Chen Z, Trotman LC, Shaffer D, Lin HK, Dotan ZA, Niki M, Koutcher JA, Scher HI, Ludwig T, Gerald W, Cordon-Cardo C, Pandolfi PP (2005) Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature 436:725–730

    Article  PubMed  CAS  Google Scholar 

  8. Gewirtz DA, Holt SE, Elmore LW (2008) Accelerated senescence: an emerging role in tumor cell response to chemotherapy and radiation. Biochem Pharmacol 76:947–957

    Article  PubMed  CAS  Google Scholar 

  9. Litwiniec A, Grzanka A, Helmin-Basa A, Gackowska L, Grzanka D (2010) Features of senescence and cell death induced by doxorubicin in A549 cells: organization and level of selected cytoskeletal proteins. J Cancer Res Clin Oncol 136:717–736

    Article  PubMed  CAS  Google Scholar 

  10. Banito A, Gil J (2010) Induced pluripotent stem cells and senescence: learning the biology to improve the technology. EMBO Rep 11:353–359

    Article  PubMed  CAS  Google Scholar 

  11. Cristofalo VJ, Pignolo RJ (1993) Replicative senescence of human fibroblast-like cells in culture. Physiol Rev 73:617–638

    PubMed  CAS  Google Scholar 

  12. Cho S, Hwang ES (2011) Fluorescence-based detection and quantification of features of cellular senescence. Methods Cell Biol 103:149–188

    Article  PubMed  CAS  Google Scholar 

  13. Funayama R, Ishikawa F (2007) Cellular senescence and chromatin structure. Chromosoma 116:431–440

    Article  PubMed  Google Scholar 

  14. Narita M, Lowe SW (2004) Executing cell senescence. Cell Cycle 3:244–246

    Article  PubMed  CAS  Google Scholar 

  15. Zhang R, Adams PD (2007) Heterochromatin and its relationship to cell senescence and cancer therapy. Cell Cycle 6:784–789

    Article  PubMed  CAS  Google Scholar 

  16. Li Q, Ma L, Zhang Z, Tong T (2007) SAHF: a new biomarker of cellular senescence. Prog Biochem Biophys 11:1123–1128

    Google Scholar 

  17. Qian Y, Chen X (2010) Tumor suppression by p53: making cells senescent. Histol Histopathol 25:515–526

    PubMed  CAS  Google Scholar 

  18. Shen H, Maki CG (2010) Persistent p21 expression after Nutlin-3a removal is associated with senescence-like arrest in 4 N cells. J Biol Chem 285:23105–23114

    Article  PubMed  CAS  Google Scholar 

  19. Korotchkina LG, Demidenko ZN, Gudkov AV, Blagosklonny MV (2009) Cellular quiescence caused by the Mdm2 inhibitor nutlin-3A. Cell Cycle 8:3777–3781

    Article  PubMed  CAS  Google Scholar 

  20. Demidenko ZN, Korotchkina LG, Gudkov AV, Blagosklonny MV (2010) Paradoxical suppression of cellular senescence by p53. Proc Natl Acad Sci U S A 107:9660–9664

    Article  PubMed  CAS  Google Scholar 

  21. Mah LJ, El-Osta A, Karagiannis TC (2010) GammaH2AX as a molecular marker of aging and disease. Epigenetics 5:129–136

    Article  PubMed  CAS  Google Scholar 

  22. Mallette FA, Ferbeyre G (2007) The DNA damage signaling pathway connects oncogenic stress to cellular senescence. Cell Cycle 6:1831–1836

    Article  PubMed  CAS  Google Scholar 

  23. Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C, Medrano EE, Linskens M, Rubelj I, Pereira-Smith O et al (1995) A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci U S A 92:9363–9367

    Article  PubMed  CAS  Google Scholar 

  24. Itahana K, Campisi J, Dimri GP (2007) Methods to detect biomarkers of cellular senescence: the senescence-associated beta-galactosidase assay. Methods Mol Biol 371:21–31

    Article  PubMed  CAS  Google Scholar 

  25. Nowicki TS, Zhao H, Darzynkiewicz Z, Moscatello A, Shin E, Schantz S, Tiwari RK, Geliebter J (2011) Downregulation of uPAR inhibits migration, invasion, proliferation, FAK/PI3K/Akt signaling and induces ­senescence in papillary thyroid carcinoma cells. Cell Cycle 10:100–107

    Article  PubMed  CAS  Google Scholar 

  26. Zhao H, Halicka HD, Traganos F, Jorgensen E, Darzynkiewicz Z (2010) New biomarkers probing depth of cell senescence assessed by laser scanning cytometry. Cytometry A 77:999–1007

    PubMed  Google Scholar 

  27. Kamentsky LA, Kamentsky LD (1991) Microscope-based multiparameter laser scanning cytometer yielding data comparable to flow cytometry data. Cytometry 12:381–387

    Article  PubMed  CAS  Google Scholar 

  28. Darzynkiewicz Z, Bedner E, Li X, Gorczyca W, Melamed MR (1999) Laser-scanning cytometry: a new instrumentation with many applications. Exp Cell Res 249:1–12

    Article  PubMed  CAS  Google Scholar 

  29. Henriksen M, Miller B, Newmark J, Al-Kofahi Y, Holden E (2011) Laser scanning cytometry and its applications: a pioneering technology in the field of quantitative imaging cytometry. Methods Cell Biol 102:161–205

    PubMed  Google Scholar 

  30. Gong J, Traganos F, Darzynkiewicz Z (1995) Growth imbalance and altered expression of cyclins B1, A, E, and D3 in MOLT-4 cells synchronized in the cell cycle by inhibitors of DNA replication. Cell Growth Differ 6:1485–1493

    PubMed  CAS  Google Scholar 

  31. Tanaka T, Halicka HD, Huang X, Traganos F, Darzynkiewicz Z (2006) Constitutive histone H2AX phosphorylation and ATM activation, the reporters of DNA damage by endogenous oxidants. Cell Cycle 5:1940–1945

    Article  PubMed  CAS  Google Scholar 

  32. Zhao H, Tanaka T, Halicka HD, Traganos F, Zarebski M, Dobrucki J, Darzynkiewicz Z (2007) Cytometric assessment of DNA damage by exogenous and endogenous oxidants reports aging-related processes. Cytometry A 71:905–914

    PubMed  Google Scholar 

  33. Zhao H, Traganos F, Dobrucki J, Wlodkowic D, Darzynkiewicz Z (2009) Induction of DNA damage response by the supravital probes of nucleic acids. Cytometry A 75:510–519

    PubMed  Google Scholar 

Download references

Acknowledgment

Supported by NCI grant RO1 28 704 and Robert A. Welke Cancer Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zbigniew Darzynkiewicz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Busincess Media, LLC

About this protocol

Cite this protocol

Zhao, H., Darzynkiewicz, Z. (2013). Biomarkers of Cell Senescence Assessed by Imaging Cytometry. In: Galluzzi, L., Vitale, I., Kepp, O., Kroemer, G. (eds) Cell Senescence. Methods in Molecular Biology, vol 965. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-239-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-239-1_5

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-238-4

  • Online ISBN: 978-1-62703-239-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics