Skip to main content

Assessment and Quantification of Telomerase Enzyme Activity

  • Protocol
  • First Online:
Cell Senescence

Part of the book series: Methods in Molecular Biology ((MIMB,volume 965))

Abstract

The enzyme telomerase is activated in 80–90% of all human malignancies and immortal cell lines, where it functions to maintain the integrity of chromosomal-end structures called telomeres. Telomerase enzyme activity can be detected in whole cell lysates by a polymerase chain reaction (PCR)-based method referred to as the telomeric repeat amplification protocol (TRAP). The TRAP assay involves extension of an oligonucleotide through telomerase-mediated enzymatic addition of telomeric DNA repeats and subsequent PCR amplification of the extension products. While the TRAP assay as originally developed utilizes radioactively labelled nucleotides, protocols are provided herein for nonradioactive versions of the TRAP assay, with options for either qualitative assessment of TRAP products by polyacrylamide gel electrophoresis (standard TRAP), or quantitative analysis by real-time PCR (Q-TRAP). The Q-TRAP method poses the additional advantages of exquisite sensitivity, rapidity, and potential for adoption to a high-throughput format.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Harley CB, Futcher AB, Greider CW (1990) Telomeres shorten during ageing of human fibroblasts. Nature 345:458–460

    Article  PubMed  CAS  Google Scholar 

  2. Hastie ND, Dempster M, Dunlop MG, Thompson AM, Green DK, Allshire RC (1990) Telomere reduction in human colorectal carcinoma and with ageing. Nature 346:866–868

    Article  PubMed  CAS  Google Scholar 

  3. Olovnikov AM (1973) A theory of marginotomy. The incomplete copying of template margin in enzymic synthesis of polynucleotides and biological significance of the phenomenon. J Theor Biol 41:181–190

    Article  PubMed  CAS  Google Scholar 

  4. Moyzis RK, Buckingham JM, Cram LS, Dani M, Deaven LL, Jones MD, Meyne J, Ratliff RL, Wu JR (1988) A highly conserved repetitive DNA sequence, (TTAGGG)n, present at the telomeres of human chromosomes. Proc Natl Acad Sci U S A 85:6622–6626

    Article  PubMed  CAS  Google Scholar 

  5. McClintock B (1941) The stability of broken ends of chromosomes in Zea mays. Genetics 26:234–282

    PubMed  CAS  Google Scholar 

  6. Blackburn EH, Gall JG (1978) A tandemly repeated sequence at the termini of the extrachromosomal ribosomal RNA genes in Tetrahymena. J Mol Biol 120:33–53

    Article  PubMed  CAS  Google Scholar 

  7. d’Adda di Fagagna F, Reaper PM, Clay-Farrace L, Fiegler H, Carr P, Von Zglinicki T, Saretzki G, Carter NP, Jackson SP (2003) A DNA damage checkpoint response in telomere-initiated senescence. Nature 426:194–198

    Article  PubMed  Google Scholar 

  8. Blackburn EH, Greider CW, Henderson E, Lee MS, Shampay J, Shippen-Lentz D (1989) Recognition and elongation of telomeres by telomerase. Genome 31:553–560

    Article  PubMed  CAS  Google Scholar 

  9. Greider CW, Blackburn EH (1989) A telomeric sequence in the RNA of tetrahymena telomerase required for telomere repeat synthesis. Nature 337:331–337

    Article  PubMed  CAS  Google Scholar 

  10. Morin GB (1989) The human telomere terminal transferase enzyme is a ribonucleoprotein that synthesizes TTAGGG repeats. Cell 59:521–529

    Article  PubMed  CAS  Google Scholar 

  11. Mitchell JR, Wood E, Collins K (1999) A telomerase component is defective in the human disease dyskeratosis congenita. Nature 402:551–555

    Article  PubMed  CAS  Google Scholar 

  12. Cohen SB, Graham ME, Lovrecz GO, Bache N, Robinson PJ, Reddel RR (2007) Protein composition of catalytically active human telomerase from immortal cells. Science 315:1850–1853

    Article  PubMed  CAS  Google Scholar 

  13. Greider CW, Blackburn EH (1985) Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell 43:405–413

    Article  PubMed  CAS  Google Scholar 

  14. Kim NW, Piatyszek MA, Prowse KR, Harley CB, West MD, Ho PL, Coviello GM, Wright WE, Weinrich SL, Shay JW (1994) Specific association of human telomerase activity with immortal cells and cancer. Science 266:2011–2015

    Article  PubMed  CAS  Google Scholar 

  15. Kim NW, Wu F (1997) Advances in quantification and characterization of telomerase activity by the telomeric repeat amplification protocol (TRAP). Nucleic Acids Res 25:2595–2597

    Article  PubMed  CAS  Google Scholar 

  16. Counter CM, Gupta J, Harley CB, Leber B, Bacchetti S (1995) Telomerase activity in normal leukocytes and in hematologic malignancies. Blood 85:2315–2320

    PubMed  CAS  Google Scholar 

  17. Broccoli D, Young JW, de Lange T (1995) Telomerase activity in normal and malignant hematopoietic cells. Proc Natl Acad Sci U S A 92:9082–9086

    Article  PubMed  CAS  Google Scholar 

  18. Hiyama K, Hirai Y, Kyoizumi S, Akiyama M, Hiyama E, Piatyszek MA, Shay JW, Ishioka S, Yamakido M (1995) Activation of telomerase in human lymphocytes and hematopoietic progenitor cells. J Immunol 155:3711–3715

    PubMed  CAS  Google Scholar 

  19. Wright WE, Piatyszek MA, Rainey WE, Byrd W, Shay JW (1996) Telomerase activity in human germline and embryonic tissues and cells. Dev Genet 18:173–179

    Article  PubMed  CAS  Google Scholar 

  20. Falchetti ML, Levi A, Molinari P, Verna R, D’Ambrosio E (1998) Increased sensitivity and reproducibility of TRAP assay by avoiding direct primers interaction. Nucleic Acids Res 26:862–863

    Article  PubMed  CAS  Google Scholar 

  21. Herbert BS, Hochreiter AE, Wright WE, Shay JW (2006) Nonradioactive detection of telomerase activity using the telomeric repeat amplification protocol. Nat Protoc 1:1583–1590

    Article  PubMed  CAS  Google Scholar 

  22. Hou M, Xu D, Bjorkholm M, Gruber A (2001) Real-time quantitative telomeric repeat amplification protocol assay for the detection of telomerase activity. Clin Chem 47:519–524

    PubMed  CAS  Google Scholar 

  23. Fu B, Quintero J, Baker CC (2003) Keratinocyte growth conditions modulate telomerase expression, senescence, and immortalization by human papillomavirus type 16 E6 and E7 oncogenes. Cancer Res 63:7815–7824

    PubMed  CAS  Google Scholar 

  24. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors have no conflicts of interest to declare. Children’s Cancer Institute Australia for Medical Research is affiliated with the University of New South Wales and Sydney Children’s Hospitals Network. Funding: National Health and Medical Research Council Career Development Fellowship (510378), National Health and Medical Research Project Grants (568704, 1007911), Cancer Council NSW Project Grant (08-03), and Cancer Institute New South Wales Scholar Award (09/RSA/1-26).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen L. MacKenzie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Busincess Media, LLC

About this protocol

Cite this protocol

Maritz, M.F., Richards, L.A., MacKenzie, K.L. (2013). Assessment and Quantification of Telomerase Enzyme Activity. In: Galluzzi, L., Vitale, I., Kepp, O., Kroemer, G. (eds) Cell Senescence. Methods in Molecular Biology, vol 965. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-239-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-239-1_14

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-238-4

  • Online ISBN: 978-1-62703-239-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics