Skip to main content

Genetic Control of Root Organogenesis in Cereals

  • Protocol
  • First Online:
Plant Organogenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 959))

Abstract

Monocot cereals develop a complex root system comprising embryonic roots at an early seedling stage and postembryonic roots which make up the fibrous root system of adult crops. In the model cereals maize, rice, and barley a number of mutants affecting root development have been identified in the past and a subset of the affected genes have been recently cloned and functionally characterized. The present review summarizes genetic and molecular data of cereal root mutants impaired in the elongation or initiation of embryonic and postembryonic roots and the elongation of root hairs for which the affected genes have been recently cloned.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chandler VL, Brendel V (2002) The maize genome sequencing project. Plant Physiol 130:1594–1597

    Article  PubMed  CAS  Google Scholar 

  2. Khush GS (2005) What it will take to feed 5.0 billion rice consumers in 2030. Plant Mol Biol 59:1–6

    Article  PubMed  CAS  Google Scholar 

  3. Hochholdinger F, Park WJ, Sauer M, Woll K (2004) From weeds to crops: genetic analysis of root development in cereals. Trends Plant Sci 9:42–48

    Article  PubMed  CAS  Google Scholar 

  4. Coudert Y, Perin C, Courtois B, Khong NG, Gantet P (2010) Genetic control of root development in rice, the model cereal. Trends Plant Sci 15:219–226

    Article  PubMed  CAS  Google Scholar 

  5. Hochholdinger F (2009) The maize root system: morphology, anatomy and genetics. In: Bennetzen J, Hake S (eds) Handbook of maize. Springer, New York, pp 145–160

    Chapter  Google Scholar 

  6. Moriata S, Nemoto K (1995) Morphology and anatomy of rice roots with special reference to coordination in organo- and histogenesis. In: Baluska T et al (eds) Structure and function of roots. Kluwer academic, Dordrecht

    Google Scholar 

  7. Kawata S, Yamazaki K, Ishihara K, Shibayama H, Lai KL (1963) Studies on root system formation in rice plants in a paddy. Proc Crop Sci Soc Japan 32:163

    Article  Google Scholar 

  8. Hochholdinger F, Zimmermann R (2009) Molecular and genetic dissection of cereal root system development. In: Beeckman T (ed) Annual plant reviews root development. Wiley, New York, pp 175–191

    Google Scholar 

  9. Esau K (1965) Plant anatomy, 2nd edn. Wiley, New York

    Google Scholar 

  10. Feldman L (1994) The maize root. In: Freeling M, Walbot V (eds) The maize handbook. Springer, New York, pp 29–37

    Google Scholar 

  11. Varney GT, Canny MJ (1993) Rates of water uptake into the mature root system of maize plants. New Phytol 123:775–786

    Article  Google Scholar 

  12. Laskowski MJ, Williams ME, Nusbaum HC, Sussex IM (1995) Formation of lateral root meristems is a two-stage process. Development 121:3303–3310

    PubMed  CAS  Google Scholar 

  13. Malamy JE, Benfey PN (1997) Organization and cell differentiation in lateral roots of Arabidopsis thaliana. Development 124:33–44

    PubMed  CAS  Google Scholar 

  14. Schiefelbein JW, Masucci JD, Wang H (1997) Building a root: the control of patterning and morphogenesis during root development. Plant Cell 9:1089–1098

    Article  PubMed  CAS  Google Scholar 

  15. Hochholdinger F, Zimmermann R (2008) Conserved and diverse mechanisms in root development. Curr Opin Plant Biol 11:70–74

    Article  PubMed  CAS  Google Scholar 

  16. Ishikawa H, Evans ML (1995) Specialized zones of development in roots. Plant Physiol 109:725–727

    Article  PubMed  CAS  Google Scholar 

  17. Jiang K, Meng YL, Feldman LJ (2003) Quiescent center formation in maize roots is associated with an auxin-regulated oxidizing environment. Development 130:1429–1438

    Article  PubMed  CAS  Google Scholar 

  18. Feix G, Hochholdinger F, Park WJ (2002) Maize root system and genetic analysis of its formation. In: Waisel Y et al (eds) Plant roots: the hidden half, 4th edn. Marcel Dekker, New York, pp 239–248

    Google Scholar 

  19. Gerald JNF, Lehti-Shiu MD, Ingram PA, Deak KI, Biesiada T, Malamy JE (2006) Identification of quantitative trait loci that regulate Arabidopsis root system size and plasticity. Genetics 172:485–498

    Article  Google Scholar 

  20. Trachsel S, Messmer R, Stamp P, Hund A (2009) Mapping of QTLs for lateral and axile root growth of tropical maize. Theor Appl Genet 119:1413–1424

    Article  PubMed  CAS  Google Scholar 

  21. Ruta N, Liedgens M, Fracheboud Y, Stamp P, Hund A (2010) QTLs for the elongation of axile and lateral roots of maize in response to low water potential. Theor Appl Genet 120:621–631

    Article  PubMed  CAS  Google Scholar 

  22. Landi P, Giuliani S, Salvi S, Ferri M, Tuberosa R, Sanguineti MC (2010) Characterization of root-yield-1.06, a major constitutive QTL for root and agronomic traits in maize across water regimes. J Exp Bot 61:3553–3562

    Article  PubMed  CAS  Google Scholar 

  23. Norton GJ, Price AH (2009) Mapping of quantitative trait loci for seminal root morphology and gravitropic response in rice. Euphytica 166:229–237

    Article  Google Scholar 

  24. Obara M, Tamura W, Ebitani T, Yano M, Sato T, Yamaya T (2010) Fine-mapping of qRL6.1, a major QTL for root length of rice seedlings grown under a wide range of NH4 + concentrations in hydroponic conditions. Theor Appl Genet 121:535–547

    Article  PubMed  CAS  Google Scholar 

  25. Neuffer MG (1994) Mutagenesis. In: Freeling M, Walbot V (eds) The maize handbook, Springer, New York 212–219

    Google Scholar 

  26. Walbot V (2000) Saturation mutagenesis using maize transposons. Curr Opin Plant Biol 3:103–107

    Article  PubMed  CAS  Google Scholar 

  27. Jeong DH, An S, Park S, Kang HG, Park GG, Kim SR, Sim J, Kim YO, Kim MK, Kim J, Shin M, Jung M, An G (2006) Generation of a flanking sequence-tag database for activation-tagging lines in japonica rice. Plant J 45:123–132

    Article  PubMed  CAS  Google Scholar 

  28. Hetz W, Hochholdinger F, Schwall M, Feix G (1996) Isolation and characterization of rtcs, a maize mutant deficient in the formation of nodal roots. Plant J 10:845–857

    Article  CAS  Google Scholar 

  29. Hochholdinger F, Feix G (1998) Early post-embryonic root formation is specifically affected in the maize mutant Irt1. Plant J 16:247–255

    Article  PubMed  CAS  Google Scholar 

  30. Wen TJ, Hochholdinger F, Sauer M, Bruce W, Schnable PS (2005) The roothairless1 gene of maize encodes a homolog of sec3, which is involved in polar exocytosis. Plant Physiol 138:1637–1643

    Article  PubMed  CAS  Google Scholar 

  31. Hochholdinger F, Woll K, Sauer M, Feix G (2005) Functional genomic tools in support of the genetic analysis of root development in maize (Zea mays L.). Maydica 50:437–442

    Google Scholar 

  32. Zhu J, Ingram PA, Benfey PN, Elich T (2011) From lab to field, new approaches to phenotyping root system architecture. Curr Opin Plant Biol 14:1–8

    Article  Google Scholar 

  33. Hund A, Trachsel S, Stamp P (2009) Growth of axile and lateral roots of maize: I development of a phenotying platform. Plant Soil 325:335–349

    Article  CAS  Google Scholar 

  34. Fang SQ, Yan XL, Liao H (2009) 3D reconstruction and dynamic modeling of root architecture in situ and its application to crop phosphorus research. Plant J 60:1096–1108

    Article  PubMed  CAS  Google Scholar 

  35. Iyer-Pascuzzi AS, Symonova O, Mileyko Y, Hao YL, Belcher H, Harer J, Weitz JS, Benfey PN (2010) Imaging and analysis platform for automatic phenotyping and trait ranking of plant root systems. Plant Physiol 152:1148–1157

    Article  PubMed  CAS  Google Scholar 

  36. Trachsel S, Kaeppler SM, Brown KM, Lynch JP (2011) Shovelomics: high throughput phenotyping of maize (Zea mays L.) root architecture in the field. Plant Soil 341:75–87

    Article  CAS  Google Scholar 

  37. Taramino G, Sauer M, Stauffer JL Jr, Multani D, Niu X, Sakai H, Hochholdinger F (2007) The maize (Zea mays L.) RTCS gene encodes a LOB domain protein that is a key regulator of embryonic seminal and post-embryonic shoot-borne root initiation. Plant J 50:649–659

    Article  PubMed  CAS  Google Scholar 

  38. Majer C, Hochholdinger F (2011) Defining the boundaries: structure and function of LOB domain proteins. Trends Plant Sci 16:47–52

    Article  PubMed  CAS  Google Scholar 

  39. Inukai Y, Sakamoto T, Ueguchi-Tanaka M, Shibata Y, Gomi K, Umemura I, Hasegawa Y, Ashikari M, Kitano H, Matsuoka M (2005) Crown rootless1, which is essential for crown root formation in rice, is a target of an auxin response factor in auxin signaling. Plant Cell 17:1387–1396

    Article  PubMed  CAS  Google Scholar 

  40. Liu H, Wang S, Yu X, Yu J, He X, Zhang S, Shou H, Wu P (2005) ARL1, a LOB-domain protein required for adventitious root formation in rice. Plant J 43:47–56

    Article  PubMed  Google Scholar 

  41. Friml J (2003) Auxin transport—shaping the plant. Curr Opin Plant Biol 6:7–12

    Article  PubMed  CAS  Google Scholar 

  42. Peret B, De Rybel B, Casimiro I, Benkova E, Swarup R, Laplaze L, Beeckman T, Bennett MJ (2009) Arabidopsis lateral root development: an emerging story. Trends Plant Sci 14:399–408

    Article  PubMed  CAS  Google Scholar 

  43. Okushima Y, Fukaki H, Onoda M, Theologis A, Tasaka M (2007) ARF7 and ARF19 regulate lateral root formation via direct activation of LBD/ASL genes in Arabidopsis. Plant Cell 19:118–130

    Article  PubMed  CAS  Google Scholar 

  44. Shuai B, Reynaga-Pena CG, Springer PS (2002) The LATERAL ORGAN BOUNDARIES gene defines a novel, plant-specific gene family. Plant Physiol 129:747–761

    Article  PubMed  CAS  Google Scholar 

  45. Casimiro I, Marchant A, Bhalerao RP, Beeckman T, Dhooge S, Swarup R, Graham N, Inze D, Sandberg G, Casero PJ, Bennett M (2001) Auxin transport promotes Arabidopsis lateral root initiation. Plant Cell 13:843–852

    PubMed  CAS  Google Scholar 

  46. Kitomi Y, Ogawa A, Kitano H, Inukai Y (2008) CRL4 regulates crown root formation through auxin transport in rice. Plant Root 2:19–28

    Article  CAS  Google Scholar 

  47. Liu S, Wang J, Wang L, Wang X, Xue Y, Wu P, Shou H (2009) Adventitious root formation in rice requires OsGNOM1 and is mediated by the OsPINs family. Cell Res 19:1110–1119

    Article  PubMed  CAS  Google Scholar 

  48. Geldner N, Anders N, Wolters H, Keicher J, Kornberger W, Muller P, Delbarre A, Ueda T, Nakano A, Jurgens G (2003) The Arabidopsis GNOM ARF-GEF mediates endosomal recycling, auxin transport, and auxin-dependent plant growth. Cell 112:219–230

    Article  PubMed  CAS  Google Scholar 

  49. Steinmann T, Geldner N, Grebe M, Mangold S, Jackson CL, Paris S, Galweiler L, Palme K, Jurgens G (1999) Coordinated polar localization of auxin efflux carrier PIN1 by GNOM ARF GEF. Science 286:316–318

    Article  PubMed  CAS  Google Scholar 

  50. Friml J, Vieten A, Sauer M, Weijers D, Schwarz H, Hamann T, Offringa R, Jurgens G (2003) Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis. Nature 426:147–153

    Article  PubMed  CAS  Google Scholar 

  51. Wang XF, He FF, Ma XX, Mao CZ, Hodgman C, Lu CG, Wu P (2011) OsCAND1 is required for crown root emergence in rice. Mol Plant 4:289–299

    Article  PubMed  CAS  Google Scholar 

  52. Chuang HW, Zhang W, Gray WM (2004) Arabidopsis ETA2, an apparent ortholog of the human cullin-interacting protein CAND1, is required for auxin responses mediated by the SCF(TIR1) ubiquitin ligase. Plant Cell 16:1883–1897

    Article  PubMed  CAS  Google Scholar 

  53. Feng S, Shen Y, Sullivan JA, Rubio V, Xiong Y, Sun TP, Deng XW (2004) Arabidopsis CAND1, an unmodified CUL1-interacting protein, is involved in multiple developmental pathways controlled by ubiquitin/proteasome-mediated protein degradation. Plant Cell 16:1870–1882

    Article  PubMed  CAS  Google Scholar 

  54. Quint M, Gray WM (2006) Auxin signaling. Curr Opin Plant Biol 9:448–453

    Article  PubMed  CAS  Google Scholar 

  55. Woll K, Borsuk LA, Stransky H, Nettleton D, Schnable PS, Hochholdinger F (2005) Isolation, characterization, and pericycle-specific transcriptome analyses of the novel maize lateral and seminal root initiation mutant rum1. Plant Physiol 139:1255–1267

    Article  PubMed  CAS  Google Scholar 

  56. von Behrens I, Komatsu M, Zhang Y, Berendzen KW, Niu X, Sakai H, Taramino G, Hochholdinger F (2011) Rootless with undetectable meristem 1 encodes a monocot-specific AUX/IAA protein that controls embryonic seminal and postembryonic lateral root initiation in maize. Plant J 66:341–353

    Article  Google Scholar 

  57. Jia L, Wu Z, Hao X, Carrie C, Zheng L, Whelan J, Wu Y, Wang S, Wu P, Mao C (2011) Identification of a novel mitochondrial protein, short postembryonic roots 1 (SPR1), involved in root development and iron homeostasis in Oryza sativa. New Phytol 189:843–855

    Article  PubMed  CAS  Google Scholar 

  58. Gilroy S, Jones DL (2000) Through form to function: root hair development and nutrient uptake. Trends Plant Sci 5:56–60

    Article  PubMed  CAS  Google Scholar 

  59. Sieberer BJ, Ketelaar T, Esseling JJ, Emons AM (2005) Microtubules guide root hair tip growth. New Phytol 167:711–719

    Article  PubMed  CAS  Google Scholar 

  60. Wen TJ, Schnable PS (1994) Analyses of mutants of three genes that influence root hair development in Zea mays (Gramineae) suggest that root hairs are dispensable. Am J Bot 81:833–843

    Article  Google Scholar 

  61. He B, Guo W (2009) The exocyst complex in polarized exocytosis. Curr Opin Cell Biol 21:537–542

    Article  PubMed  CAS  Google Scholar 

  62. Hala M, Cole R, Synek L, Drdova E, Pecenkova T, Nordheim A, Lamkemeyer T, Madlung J, Hochholdinger F, Fowler JE, Zarsky V (2008) An exocyst complex functions in plant cell growth in Arabidopsis and tobacco. Plant Cell 20:1330–1345

    Article  PubMed  CAS  Google Scholar 

  63. Hochholdinger F, Wen TJ, Zimmermann R, Chimot-Marolle P, Da Costa e Silva O, Bruce W, Lamkey KR, Wienand U, Schnable PS (2008) The maize (Zea mays L.) roothairless3 gene encodes a putative GPI-anchored, monocot-specific, COBRA-like protein that significantly affects grain yield. Plant J 54:888–898

    Article  PubMed  CAS  Google Scholar 

  64. Brady SM, Song S, Dhugga KS, Rafalski JA, Benfey PN (2007) Combining expression and comparative evolutionary analysis. The COBRA gene family. Plant Physiol 143:172–187

    Article  PubMed  CAS  Google Scholar 

  65. Suzuki N, Taketa S, Ichii M (2003) Morphological and phiosiological characteristics of a root-hairless mutant in rice. Plant Soil 255:9–17

    Article  CAS  Google Scholar 

  66. Yuo T, Toyota S, Ichii M, Taketa S (2009) Molecular cloning of a root hairless gene rth1 in rice. Breed Sci 59:13–20

    Article  CAS  Google Scholar 

  67. Shibata K, Morita Y, Abe S, Stankovic B, Davies E (1999) Apyrase from pea stems: isolation, purification, characterization and identification of a NTPase from the cytoskeleton fraction of pea stem tissue. Plant Physiol Biochem 37:881–888

    Article  CAS  Google Scholar 

  68. Kwasniewski M, Szarejko I (2006) Molecular cloning and characterization of β-expansin gene related to root hair formation in barley. Plant Physiol 141:1149–1158

    Article  PubMed  CAS  Google Scholar 

  69. Sampedro J, Cosgrove DJ (2005) The expansin superfamily. Genome Biol 6:242

    Article  PubMed  Google Scholar 

  70. Zhiming Y, Bo K, Xiaowei H, Shaolei L, Youhuang B, Wona D, Ming C, Hyung-Taeg C, Ping W (2011) Root hair-specific EXPANSINs modulate root hair elongation in rice. Plant J 66:725–734

    Article  PubMed  Google Scholar 

  71. Kwasniewski M, Janiak A, Mueller-Roeber B, Szarejko I (2010) Global analysis of the root hair morphogenesis transcriptome reveals new candidate genes involved in root hair formation in barley. J Plant Physiol 167:1076–1083

    Article  PubMed  CAS  Google Scholar 

  72. Goff SA, Ricke D, Lan TH, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H, Hadley D, Hutchison D, Martin C, Katagiri F, Lange BM, Moughamer T, Xia Y, Budworth P, Zhong J, Miguel T, Paszkowski U, Zhang S, Colbert M, Sun WL, Chen L, Cooper B, Park S, Wood TC, Mao L, Quail P, Wing R, Dean R, Yu Y, Zharkikh A, Shen R, Sahasrabudhe S, Thomas A, Cannings R, Gutin A, Pruss D, Reid J, Tavtigian S, Mitchell J, Eldredge G, Scholl T, Miller RM, Bhatnagar S, Adey N, Rubano T, Tusneem N, Robinson R, Feldhaus J, Macalma T, Oliphant A, Briggs S (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296:92–100

    Article  PubMed  CAS  Google Scholar 

  73. Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S, Liang C, Zhang J, Fulton L, Graves TA, Minx P, Reily AD, Courtney L, Kruchowski SS, Tomlinson C, Strong C, Delehaunty K, Fronick C, Courtney B, Rock SM, Belter E, Du F, Kim K, Abbott RM, Cotton M, Levy A, Marchetto P, Ochoa K, Jackson SM, Gillam B, Chen W, Yan L, Higginbotham J, Cardenas M, Waligorski J, Applebaum E, Phelps L, Falcone J, Kanchi K, Thane T, Scimone A, Thane N, Henke J, Wang T, Ruppert J, Shah N, Rotter K, Hodges J, Ingenthron E, Cordes M, Kohlberg S, Sgro J, Delgado B, Mead K, Chinwalla A, Leonard S, Crouse K, Collura K, Kudrna D, Currie J, He R, Angelova A, Rajasekar S, Mueller T, Lomeli R, Scara G, Ko A, Delaney K, Wissotski M, Lopez G, Campos D, Braidotti M, Ashley E, Golser W, Kim H, Lee S, Lin J, Dujmic Z, Kim W, Talag J, Zuccolo A, Fan C, Sebastian A, Kramer M, Spiegel L, Nascimento L, Zutavern T, Miller B, Ambroise C, Muller S, Spooner W, Narechania A, Ren L, Wei S, Kumari S, Faga B, Levy MJ, McMahan L, Van Buren P, Vaughn MW et al (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112–1115

    Article  PubMed  CAS  Google Scholar 

  74. Yu J, Hu S, Wang J, Wong GK, Li S, Liu B, Deng Y, Dai L, Zhou Y, Zhang X, Cao M, Liu J, Sun J, Tang J, Chen Y, Huang X, Lin W, Ye C, Tong W, Cong L, Geng J, Han Y, Li L, Li W, Hu G, Li J, Liu Z, Qi Q, Li T, Wang X, Lu H, Wu T, Zhu M, Ni P, Han H, Dong W, Ren X, Feng X, Cui P, Li X, Wang H, Xu X, Zhai W, Xu Z, Zhang J, He S, Xu J, Zhang K, Zheng X, Dong J, Zeng W, Tao L, Ye J, Tan J, Chen X, He J, Liu D, Tian W, Tian C, Xia H, Bao Q, Li G, Gao H, Cao T, Zhao W, Li P, Chen W, Zhang Y, Hu J, Liu S, Yang J, Zhang G, Xiong Y, Li Z, Mao L, Zhou C, Zhu Z, Chen R, Hao B, Zheng W, Chen S, Guo W, Tao M, Zhu L, Yuan L, Yang H (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296:79–92

    Article  PubMed  CAS  Google Scholar 

  75. Schulte D, Close TJ, Graner A, Langridge P, Matsumoto T, Muehlbauer G, Sato K, Schulman AH, Waugh R, Wise RP, Stein N (2009) The international barley sequencing consortium—at the threshold of efficient access to the barley genome. Plant Physiol 149:142–147

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowlegments

Root research in the Hochholdinger lab is supported by the DFG (Deutsche Forschungsgemeinschaft). We thank Dr. Dierk Wanke (University of Tübingen, Germany) for providing rice seeds to generate Fig. 1a and Dr. Caroline Gutjahr (LMU Munich, Germany) for the picture displayed in Fig. 1c.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Hochholdinger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Marcon, C., Paschold, A., Hochholdinger, F. (2013). Genetic Control of Root Organogenesis in Cereals. In: De Smet, I. (eds) Plant Organogenesis. Methods in Molecular Biology, vol 959. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-221-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-221-6_4

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-220-9

  • Online ISBN: 978-1-62703-221-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics