Skip to main content

Studying Ubiquitination of MHC Class I Molecules

  • Protocol
  • First Online:
Antigen Processing

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 960))

Abstract

The covalent attachment of ubiquitin to a protein is one of the most common post-translational modifications and regulates diverse eukaryotic cellular processes. Ubiquitination of MHC class I was first described in the context of viral proteins which target MHC class I for degradation in the endoplasmic reticulum and at the cell surface. Study of viral-induced MHC class I degradation has been extremely instructive in elucidating cellular pathways for degradation of membrane and secretory proteins. More recently, ubiquitination of endogenous MHC class I heavy chains which fail to achieve their native conformation and undergo endoplasmic-reticulum associated degradation has been demonstrated.

In this chapter we describe methods for identification of endogenous ubiquitinated MHC class I heavy chains by MHC class I-immunoprecipitation and ubiquitin-specific immunoblot or by metabolic labeling and immunoprecipitation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Duncan LM, Piper S, Dodd RB, Saville MK, Sanderson CM, Luzio JP, Lehner PJ (2006) Lysine-63-linked ubiquitination is required for endolysosomal degradation of class I molecules. EMBO J 25(8):1635–1645. doi:7601056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Burr ML, Cano F, Svobodova S, Boyle LH, Boname JM, Lehner PJ (2011) HRD1 and UBE2J1 target misfolded MHC class I heavy chains for endoplasmic reticulum-associated degradation. Proc Natl Acad Sci U S A 108(5):2034–2039. doi:1016229108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hughes EA, Hammond C, Cresswell P (1997) Misfolded major histocompatibility complex class I heavy chains are translocated into the cytoplasm and degraded by the proteasome. Proc Natl Acad Sci U S A 94(5):1896–1901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Shamu CE, Story CM, Rapoport TA, Ploegh HL (1999) The pathway of US11-dependent degradation of MHC class I heavy chains involves a ubiquitin-conjugated intermediate. J Cell Biol 147(1):45–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Shamu CE, Flierman D, Ploegh HL, Rapoport TA, Chau V (2001) Polyubiquitination is required for US11-dependent movement of MHC class I heavy chain from endoplasmic reticulum into cytosol. Mol Biol Cell 12(8):2546–2555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Furman MH, Loureiro J, Ploegh HL, Tortorella D (2003) Ubiquitinylation of the cytosolic domain of a type I membrane protein is not required to initiate its dislocation from the endoplasmic reticulum. J Biol Chem 278(37):34804–34811. doi:10.1074/jbc.M300913200

    Article  CAS  PubMed  Google Scholar 

  7. Stagg HR, Thomas M, van den Boomen D, Wiertz EJ, Drabkin HA, Gemmill RM, Lehner PJ (2009) The TRC8 E3 ligase ubiquitinates MHC class I molecules before dislocation from the ER. J Cell Biol 186(5):685–692. doi:jcb.200906110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Boname JM, Stevenson PG (2001) MHC class I ubiquitination by a viral PHD/LAP finger protein. Immunity 15(4):627–636. doi:S1074-7613(01)00213-8

    Article  CAS  PubMed  Google Scholar 

  9. Wang X, Connors R, Harris MR, Hansen TH, Lybarger L (2005) Requirements for the selective degradation of endoplasmic reticulum-resident major histocompatibility complex class I proteins by the viral immune evasion molecule mK3. J Virol 79(7):4099–4108. doi:79/7/4099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang X, Herr RA, Chua WJ, Lybarger L, Wiertz EJ, Hansen TH (2007) Ubiquitination of serine, threonine, or lysine residues on the cytoplasmic tail can induce ERAD of MHC-I by viral E3 ligase mK3. J Cell Biol 177(4):613–624. doi:jcb.200611063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang X, Herr RA, Rabelink M, Hoeben RC, Wiertz EJ, Hansen TH (2009) Ube2j2 ubiquitinates hydroxylated amino acids on ER-associated degradation substrates. J Cell Biol 187(5):655–668. doi:jcb.200908036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hewitt EW, Duncan L, Mufti D, Baker J, Stevenson PG, Lehner PJ (2002) Ubiquitylation of MHC class I by the K3 viral protein signals internalization and TSG101-dependent degradation. EMBO J 21(10):2418–2429. doi:10.1093/emboj/21.10.2418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cadwell K, Coscoy L (2005) Ubiquitination on nonlysine residues by a viral E3 ubiquitin ligase. Science 309(5731):127–130. doi:309/5731/127

    Article  CAS  PubMed  Google Scholar 

  14. Duncan LM, Nathan JA, Lehner PJ (2010) Stabilization of an E3 ligase-E2-ubiquitin complex increases cell surface MHC class I expression. J Immunol 184(12):6978–6985. doi:jimmunol.0904154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rhodes DA, Boyle LH, Boname JM, Lehner PJ, Trowsdale J (2010) Ubiquitination of lysine-331 by Kaposi’s sarcoma-associated herpesvirus protein K5 targets HFE for lysosomal degradation. Proc Natl Acad Sci U S A 107(37):16240–16245. doi:1003421107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Boname JM, Thomas M, Stagg HR, Xu P, Peng J, Lehner PJ (2010) Efficient internalization of MHC I requires lysine-11 and lysine-63 mixed linkage polyubiquitin chains. Traffic 11(2):210–220. doi:TRA1011

    Article  CAS  PubMed  Google Scholar 

  17. Wiertz EJ, Tortorella D, Bogyo M, Yu J, Mothes W, Jones TR, Rapoport TA, Ploegh HL (1996) Sec61-mediated transfer of a membrane protein from the endoplasmic reticulum to the proteasome for destruction. Nature 384(6608):432–438. doi:10.1038/384432a0

    Article  CAS  PubMed  Google Scholar 

  18. Wiertz EJ, Jones TR, Sun L, Bogyo M, Geuze HJ, Ploegh HL (1996) The human cytomegalovirus US11 gene product dislocates MHC class I heavy chains from the endoplasmic reticulum to the cytosol. Cell 84(5):769–779. doi:S0092-8674(00)81054-5

    Article  CAS  PubMed  Google Scholar 

  19. Coscoy L, Ganem D (2000) Kaposi’s sarcoma-associated herpesvirus encodes two proteins that block cell surface display of MHC class I chains by enhancing their endocytosis. Proc Natl Acad Sci U S A 97(14):8051–8056. doi:10.1073/pnas.140129797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ishido S, Wang C, Lee BS, Cohen GB, Jung JU (2000) Downregulation of major histocompatibility complex class I molecules by Kaposi’s sarcoma-associated herpesvirus K3 and K5 proteins. J Virol 74(11):5300–5309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Barnstable CJ, Bodmer WF, Brown G, Galfre G, Milstein C, Williams AF, Ziegler A (1978) Production of monoclonal antibodies to group A erythrocytes, HLA and other human cell surface antigens-new tools for genetic analysis. Cell 14(1):9–20. doi:0092-8674(78)90296-9

    Article  CAS  PubMed  Google Scholar 

  22. Stam NJ, Vroom TM, Peters PJ, Pastoors EB, Ploegh HL (1990) HLA-A- and HLA-B-specific monoclonal antibodies reactive with free heavy chains in western blots, in formalin-fixed, paraffin-embedded tissue sections and in cryo-immuno-electron microscopy. Int Immunol 2(2):113–125

    Article  CAS  PubMed  Google Scholar 

  23. Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A 76(9):4350–4354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bloom J, Pagano M (2005) Experimental tests to definitively determine ubiquitylation of a substrate. Methods Enzymol 399:249–266. doi:S0076-6879(05)99017-4 (pii)

    Article  CAS  PubMed  Google Scholar 

  25. Laney JD, Hochstrasser M (2011) Analysis of protein ubiquitination. Curr Protoc Protein Sci Chapter 14:Unit14 15. doi:10.1002/0471140864.ps1405s66

  26. Kikkert M, Hassink G, Barel M, Hirsch C, van der Wal FJ, Wiertz E (2001) Ubiquitination is essential for human cytomegalovirus US11-mediated dislocation of MHC class I molecules from the endoplasmic reticulum to the cytosol. Biochem J 358(Pt 2):369–377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Newton K, Matsumoto ML, Wertz IE, Kirkpatrick DS, Lill JR, Tan J, Dugger D, Gordon N, Sidhu SS, Fellouse FA, Komuves L, French DM, Ferrando RE, Lam C, Compaan D, Yu C, Bosanac I, Hymowitz SG, Kelley RF, Dixit VM (2008) Ubiquitin chain editing revealed by polyubiquitin linkage-specific antibodies. Cell 134(4):668–678. doi:S0092-8674(08)00959-8

    Article  CAS  PubMed  Google Scholar 

  28. Kim W, Bennett EJ, Huttlin EL, Guo A, Li J, Possemato A, Sowa ME, Rad R, Rush J, Comb MJ, Harper JW, Gygi SP (2011) Systematic and quantitative assessment of the ubiquitin-modified proteome. Mol Cell 44(2):325–340. doi:S1097-2765(11)00675-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Xu G, Paige JS, Jaffrey SR (2010) Global analysis of lysine ubiquitination by ubiquitin remnant immunoaffinity profiling. Nat Biotechnol 28(8):868–873. doi:nbt.1654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hjerpe R, Aillet F, Lopitz-Otsoa F, Lang V, England P, Rodriguez MS (2009) Efficient protection and isolation of ubiquitylated proteins using tandem ubiquitin-binding entities. EMBO Rep 10(11):1250–1258. doi:embor2009192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lee DH, Goldberg AL (1998) Proteasome inhibitors: valuable new tools for cell biologists. Trends Cell Biol 8(10):397–403. doi:S0962-8924(98)01346-4

    Article  CAS  PubMed  Google Scholar 

  32. Mimnaugh EG, Chen HY, Davie JR, Celis JE, Neckers L (1997) Rapid deubiquitination of nucleosomal histones in human tumor cells caused by proteasome inhibitors and stress response inducers: effects on replication, transcription, translation, and the cellular stress response. Biochemistry 36(47):14418–14429. doi:10.1021/bi970998j

    Article  CAS  PubMed  Google Scholar 

  33. Melikova MS, Kondratov KA, Kornilova ES (2006) Two different stages of epidermal growth factor (EGF) receptor endocytosis are sensitive to free ubiquitin depletion produced by proteasome inhibitor MG132. Cell Biol Int 30(1):31–43. doi:S1065-6995(05)00226-X

    CAS  PubMed  Google Scholar 

  34. Mimnaugh EG, Neckers LM (2005) Measuring ubiquitin conjugation in cells. Methods Mol Biol 301:223–241. doi:1-59259-895-1:223

    CAS  PubMed  Google Scholar 

  35. Swerdlow PS, Finley D, Varshavsky A (1986) Enhancement of immunoblot sensitivity by heating of hydrated filters. Anal Biochem 156(1):147–153. doi:0003-2697(86)90166-1

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Wellcome Trust and the NIHR Cambridge Biomedical Research Centre.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul J. Lehner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Burr, M.L., Boname, J.M., Lehner, P.J. (2013). Studying Ubiquitination of MHC Class I Molecules. In: van Endert, P. (eds) Antigen Processing. Methods in Molecular Biology™, vol 960. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-218-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-218-6_9

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-217-9

  • Online ISBN: 978-1-62703-218-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics