Skip to main content

Phenotypic, Physiological, and Molecular Evaluation of Rice Chilling Stress Response at the Vegetative Stage

  • Protocol
  • First Online:
Rice Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 956))

Abstract

Rice is a chilling-sensitive plant that is particularly prone to injury during the early stages of seedling development and during flowering. Significant variation exists between subspecies with japonica cultivars generally being less sensitive than most indica cultivars. In most temperate and subtropical countries where rice is grown, crop damage often occurs during the early stages of seedling development due to occasional cold snaps coinciding with the first few weeks after direct seeding in late spring to early summer. Irreversible injuries often result in seedling mortality or if the crop survives a stress episode, plant vigor and resistance to pests and diseases are severely compromised. Recent physiological and molecular studies have shown that oxidative stress is the primary cause of early chilling injuries in rice and the differential responses of indica and japonica cultivars are defined to a large extent by gene expression related to oxidative signaling and defenses. In this chapter, we summarize basic phenotypic, physiological, and molecular procedures that can be adopted for routine evaluation of differential responses between cultivars as well as for functional genomics studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pearce RS (1999) Molecular analysis of acclimation to cold. Plant Growth Reg 29:47–76

    Article  CAS  Google Scholar 

  2. Li CC, Rutger JN (1980) Inheritance of cool-temperature seedling vigor in rice and its relationship with other agronomic characters. Crop Sci 20:295–298

    Article  Google Scholar 

  3. Adair CR (1968) Testing rice seedlings for cold tolerance. Crop Sci 8:264–265

    Article  Google Scholar 

  4. Jeong EG, Kim DS, Lee JI, Kim SL, Kim KJ, Yea JD, Son JR (2006) Effects of cold water irrigation on quality properties of rice. Kor J Crop Sci 51S:119–124

    Google Scholar 

  5. Morsy MR, Almutairi AM, Gibbons J, Yun SJ, De los Reyes BG (2005) The OsLti6 genes encoding low-molecular-weight membrane proteins are differentially expressed in rice cultivars with contrasting sensitivity to low temperature. Gene 344:171–180

    Article  PubMed  CAS  Google Scholar 

  6. Andaya VC, Mackill DJ (2003) Mapping of QTLs associated with cold tolerance during the vegetative stage of rice. J Expt Bot 54:2579–2585

    Article  CAS  Google Scholar 

  7. Jeong EG, Yea JD, Baek MK, Moon HP, Choi HC, Yoon KM, Ahn SN (2000) Estimation of critical temperature for traits related to cold tolerance in rice. Kor J Breed 32:363–368

    Google Scholar 

  8. Andaya VC, Tai TH (2006) Fine mapping of the qCTS4 locus associated with seedlings cold tolerance in rice (Oryza sativa L.). Mol Breed 20:349–358

    Article  Google Scholar 

  9. Peterson ML, Jones DB, Rutger JN (1978) Cool temperature screening of rice lines for seedling vigor. II Riso 27:269–274

    Google Scholar 

  10. Cheng C, Yun KY, Ressom H, Mohanty B, Bajic VB, Jia Y, Yun SJ, De los Reyes BG (2007) An early response regulatory cluster induced by low temperature and hydrogen peroxide in seedlings of chilling-tolerant japonica rice. BMC Genomics 8:175

    Article  PubMed  Google Scholar 

  11. Fowler S, Thomashow MF (2002) Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell 14:1675–1690

    Article  PubMed  CAS  Google Scholar 

  12. Rabbani MA, Maruyama K, Abe H, Khan MA, Katsura K, Ito Y, Yoshiwara K, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Monitoring expression profiles of rice genes under cold, drought, and high salinity stresses and abscisic acid application using cDNA microarray and RNA gel-blot analyses. Plant Physiol 133:1755–1767

    Article  PubMed  CAS  Google Scholar 

  13. Dubouzet JG, Sakuma Y, Ito Y, Kasuga M, Dubouzet EG, Miura S, Seki M, Shinozaki K, Yamaguchi-Shinozaki Y (2003) OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high salt-, and cold-responsive gene expression. Plant J 33:751–763

    Article  PubMed  CAS  Google Scholar 

  14. Yun KY, Park MR, Mohanty B, Herath V, Xu F, Mauleon R, Wijaya E, Bajic VB, Bruskiewich R, De los Reyes BG (2010) Transcriptional regulatory network triggered by oxidative signals configures the early response mechanisms of japonica rice to chilling stress. BMC Plant Biol 10:16

    Article  Google Scholar 

  15. D’Atreaux B, Toledano MB (2007) ROS as signaling molecules: mechanisms that generate specificity in ROS homeostasis. Nat Rev 8:813–824

    Article  Google Scholar 

  16. Foyer CH, Noctor G (2005) Oxidant and antioxidant signaling in plants: a re-evaluation of the concept of oxidative stress in a physiological context. Plant Cell Environm 28:1056–1071

    Article  CAS  Google Scholar 

  17. Orozco-Cardenas ML, Narvaez-Vasquez J, Ryan CA (2001) Hydrogen peroxide acts as a secondary messenger for the induction of defense genes in tomato plants in response to wounding, systemin, and methyl jasmonate. Plant Cell 13:179–191

    PubMed  CAS  Google Scholar 

  18. Johnson C, Boden E, Arias J (2003) Salicylic acid and NPR1 induce the recruitment of trans-activating TGA factors to a defense gene promoter in Arabidopsis. Plant Cell 15:1846–1858

    Article  PubMed  CAS  Google Scholar 

  19. Neill S, Desikan R, Hancock J (2002) Hydrogen peroxide signaling. Curr Opin Plant Biol 5:388–395

    Article  PubMed  CAS  Google Scholar 

  20. Memelink J, Verpoorte R, Kijne JW (2001) ORCAnization of jasmonate-responsive gene expression in alkaloid metabolism. Trends Plant Sci 6:212–219

    Article  PubMed  CAS  Google Scholar 

  21. International Rice Research Institute (2002) Standard evaluation system for rice. IRRI, Philippines, p 55

    Google Scholar 

  22. Zhou M, Diwu Z, Panchuk-Voloshina N, Haugland RP (1997) A stable nonfluorescent derivative of rosorufin for the fluorometric determination of trace hydrogen peroxide: applications in detecting the activity of phagocyte NADPH oxidase and other oxidases. Anal Biochem 253:102–168

    Google Scholar 

  23. De los Reyes BG, McGrath JM (2003) Cultivar-specific seedling vigor and expression of a putative oxalate oxidase germin-like protein in sugar beet (Beta vulgaris L.). Theor Appl Genet 107:54–61

    PubMed  Google Scholar 

  24. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by a grant from USDA-CSREES-NRI, Plant Genome Research (2006-35604-1669), to BGDR and by a grant from Korea Research Foundation (KRF-2006-352-F00002) and BioGreen 21 Program-Rural Development Administration (20080401034024), Republic of Korea, to SJY and MRP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benildo G. de los Reyes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

de los Reyes, B.G. et al. (2013). Phenotypic, Physiological, and Molecular Evaluation of Rice Chilling Stress Response at the Vegetative Stage. In: Yang, Y. (eds) Rice Protocols. Methods in Molecular Biology, vol 956. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-194-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-194-3_16

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-193-6

  • Online ISBN: 978-1-62703-194-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics