Skip to main content

Glycopeptide Enrichment for MALDI-TOF Mass Spectrometry Analysis by Hydrophilic Interaction Liquid Chromatography Solid Phase Extraction (HILIC SPE)

  • Protocol
  • First Online:
Mass Spectrometry of Glycoproteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 951))

Abstract

Glycoproteins, and in particular glycopeptides, are highly hydrophilic and are often not retained by reversed phase (RP) chromatography. The separation principle of normal phase (NP) is based on hydrophilic interactions, which in many aspects is complementary to RP separations. Hydrophilic interaction liquid chromatography (HILIC) is a fairly new variation of the NP separations used in the 1970s, the major difference being the use of aqueous solvents. HILIC provides a versatile tool for enrichment of glycopeptides before mass spectrometric (MS) analysis, particularly when used for solid phase extraction (SPE), or in combination with other chromatographic resins or ion-pairing reagents. HILIC SPE can be used for glyco-profiling, i.e., for determining the glycan heterogeneity at one specific glycosylation site, for enrichment of glycopeptides from a complex mixture of peptides, as well as for pre-fractionation of complex samples at the protein or peptide level. In this chapter we present a straightforward HILIC SPE enrichment technique and then combine C18 RP and HILIC enrichment for analysis of glycopeptides. Finally, we demonstrate HILIC enrichment using trifluoroacetic acid as an ion-pairing reagent for the enrichment of glycopeptides prior to mass spectrometry analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Varki A (1993) Biological roles of oligosaccharides: all of the theories are correct. Glycobiology 3:97–130

    Article  CAS  PubMed  Google Scholar 

  2. Gagneux P, Varki A (1999) Evolutionary considerations in relating oligosaccharide diversity to biological function. Glycobiology 9:747–755

    Article  CAS  PubMed  Google Scholar 

  3. Varki A, Lowe JB (1999) Biological roles of glycans. In: Varki A, Cummings R, Esko J, Freeze H, Hart G, Marth J (eds) Essentials of glycobiology, 2nd edn. Cold Spring Harbor Laboratory Press, Woodbury, NY, pp 57–68

    Google Scholar 

  4. Spiro RG (2002) Protein glycosylation: nature, distribution, enzymatic formation, and disease implications of glycopeptide bonds. Glycobiology 12:43R–56R

    Article  CAS  PubMed  Google Scholar 

  5. Deshpande N, Jensen PH, Packer NH, Kolarich D (2009) GlycoSpectrumScan: fishing glycopeptides from MS spectra of protease digests of human colostrum sIgA. J Proteome Res 9:1063–1075

    Article  Google Scholar 

  6. Larsen MR, Højrup P, Roepstorff P (2005) Characterization of gel-separated glycoproteins using two-step proteolytic digestion combined with sequential microcolumns and mass spectrometry. Mol Cell Proteomics 4:107–119

    Article  CAS  PubMed  Google Scholar 

  7. Mirgorodskaya E, Krogh TN, Roepstorff P (2000) Characterization of protein glycosylation by MALDI-TOFMS. In: Chapman J (ed) Methods in molecular biology: mass spectrometry of proteins and peptides. Humana Press, Totawa, NJ, pp 273–292

    Chapter  Google Scholar 

  8. Hägglund P, Bunkenborg J, Elortza F, Jensen ON, Roepstorff P (2004) A new strategy for identification of N-glycosylated proteins and unambiguous assignment of their glycosylation sites using HILIC enrichment and partial deglycosylation. J Proteome Res 3:556–566

    Article  PubMed  Google Scholar 

  9. Kieliszewski MJ, O’Neill M, Leykam J, Orlando R (1995) Tandem mass spectrometry and structural elucidation of glycopeptides from a hydroxyproline-rich plant cell wall glycoprotein indicate that contiguous hydroxyproline residues are the major sites of hydroxyproline O-arabinosylation. J Biol Chem 270:2541–2549

    Article  CAS  PubMed  Google Scholar 

  10. Bunkenborg J, Pilch BJ, Podtelejnikov AV, Wiśniewski JR (2004) Screening for N-glycosylated proteins by liquid chromatography mass spectrometry. Proteomics 4:454–465

    Article  CAS  PubMed  Google Scholar 

  11. Hirabayashi J (2004) Lectin-based structural glycomics: glycoproteomics and glycan profiling. Glycoconj J 21:35–40

    Article  PubMed  Google Scholar 

  12. Rawn JD, Lienhard GE (1974) Binding of boronic acids to chymotrypsin. Biochemistry 13:3124–3130

    Article  CAS  PubMed  Google Scholar 

  13. Sparbier K, Koch S, Kessler I, Wenzel T, Kostrzewa M (2005) Selective isolation of glycoproteins and glycopeptides for MALDI-TOF MS detection supported by magnetic particles. J Biomol Tech 16:407–413

    PubMed  PubMed Central  Google Scholar 

  14. Alley WR, Mechref Y, Novotny MV (2009) Use of activated graphitized carbon chips for liquid chromatography/mass spectrometric and tandem mass spectrometric analysis of tryptic glycopeptides. Rapid Commun Mass Spectrom 23:495–505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Larsen MR, Jensen SS, Jakobsen LA, Heegaard NHH (2007) Exploring the sialiome using titanium dioxide chromatography and mass spectrometry. Mol Cell Proteomics 6:1778–1787

    Article  CAS  PubMed  Google Scholar 

  16. Calvano CD, Zambonin CG, Jensen ON (2008) Assessment of lectin and HILIC based enrichment protocols for characterization of serum glycoproteins by mass spectrometry. J Proteomics 71:304–317

    Article  CAS  PubMed  Google Scholar 

  17. Kondo A, Miyamoto T, Yonekawa O, Giessing AM, Østerlund EC, Jensen ON (2009) Glycopeptide profiling of beta-2-glycoprotein I by mass spectrometry reveals attenuated sialylation in patients with antiphospholipid syndrome. J Proteomics 73:123–133

    Article  CAS  PubMed  Google Scholar 

  18. Kondo A, Thaysen-Andersen M, Hjernø K, Jensen ON (2010) Characterization of sialylated and fucosylated glycopeptides of β2-glycoprotein I by a combination of HILIC LC and MALDI MS/MS. J Sep Sci 33:891–902

    Article  CAS  PubMed  Google Scholar 

  19. Thaysen-Andersen M, Mysling S, Højrup P (2009) Site-specific glycoprofiling of N-linked glycopeptides using MALDI-TOF MS: strong correlation between signal strength and glycoform quantities. Anal Chem 81:3933–3943

    Article  CAS  PubMed  Google Scholar 

  20. Mysling S, Palmisano G, Højrup P, Thaysen-Andersen M (2010) Utilizing ion-pairing hydrophilic interaction chromatography solid phase extraction for efficient glycopeptide enrichment in glycoproteomics. Anal Chem 82:5598–5609

    Article  CAS  PubMed  Google Scholar 

  21. Stasyk T, Huber LA (2004) Zooming in: fractionation strategies in proteomics. Proteomics 4:3704–3716

    Article  CAS  PubMed  Google Scholar 

  22. Christiansen MN, Kolarich D, Nevalainen H, Packer NH, Jensen PH (2010) Challenges of determining O-glycopeptide heterogeneity: a fungal glucanase model system. Anal Chem 82:3500–3509

    Article  CAS  PubMed  Google Scholar 

  23. Hägglund P, Matthiesen R, Elortza F, Højrup P, Roepstorff P, Jensen ON, Bunkenborg J (2007) An enzymatic deglycosylation scheme enabling identification of core fucosylated N-glycans and O-glycosylation site mapping of human plasma proteins. J Proteome Res 6:3021–3031

    Article  PubMed  Google Scholar 

  24. Højrup P (2009) Peptide mapping for protein characterization. In: Walker JM (ed) The protein protocols handbook, 3rd edn. Humana Press, Totawa, NJ, pp 965–983

    Google Scholar 

  25. Papac DI, Wong A, Jones AJS (1996) Analysis of acidic oligosaccharides and glycopeptides by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Anal Chem 68:3215–3223

    Article  CAS  PubMed  Google Scholar 

  26. Tsarbopoulos A, Bahr U, Pramanik BN, Karas M (1997) Glycoprotein analysis by delayed extraction and post-source decay MALDI-TOF-MS. Int J Mass Spectrom Ion Process 169–170:251–261

    Article  Google Scholar 

  27. Harvey DJ (1999) Matrix-assisted laser desorption/ionization mass spectrometry of carbohydrates. Mass Spectrom Rev 18:349–450

    Article  CAS  PubMed  Google Scholar 

  28. Yoshida T (2004) Peptide separation by hydrophilic-interaction chromatography: a review. J Biochem Biophys Methods 60:265–280

    Article  CAS  PubMed  Google Scholar 

  29. Wohlgemuth J, Karas M, Eichhorn T, Hendriks R, Andrecht S (2009) Quantitative site-specific analysis of protein glycosylation by LC-MS using different glycopeptide-enrichment strategies. Anal Biochem 395:178–188

    Article  CAS  PubMed  Google Scholar 

  30. Lämmerhofer M, Richter M, Wu J, Nogueira R, Bicker W, Lindner W (2008) Mixed-mode ion-exchangers and their comparative chromatographic characterization in reversed-phase and hydrophilic interaction chromatography elution modes. J Sep Sci 31:2572–2588

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

PHJ was supported by a postdoctoral fellowship from “Annie og Otto Johs. Detlefs’ Almennyttige Fond.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pia Hønnerup Jensen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Jensen, P.H., Mysling, S., Højrup, P., Jensen, O.N. (2013). Glycopeptide Enrichment for MALDI-TOF Mass Spectrometry Analysis by Hydrophilic Interaction Liquid Chromatography Solid Phase Extraction (HILIC SPE). In: Kohler, J., Patrie, S. (eds) Mass Spectrometry of Glycoproteins. Methods in Molecular Biology, vol 951. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-146-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-146-2_10

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-145-5

  • Online ISBN: 978-1-62703-146-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics