Skip to main content

Oxidative Stress and The Endometrium

  • Chapter
  • First Online:
Studies on Women's Health

Abstract

The endometrium plays a key role in successful implantation and pregnancy. A delicate balance exists between the antioxidant mechanisms and the reactive oxygen species in the endometrium. When pregnancy occurs, successful implantation results in the production of Human Chorionic Gonadotropin (HCG) which maintains progesterone levels. Progesterone increases the activity of superoxide dismutase in the endometrium which in turn suppresses the production of reactive oxygen species and prostaglandin F2α. (PGF2α). On the other hand, in the absence of pregnancy, progesterone levels drop and superoxide dismutase activity declines. As a result, cyclooxygenase enzyme 2 (COX2) and PGF2α increase, resulting in menstruation. HCG might improve the uterine environment prior to implantation by suppressing the apoptotic response to oxidative stress in the maternal decidua.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. DeCherney A, Hill MJ (2010) The future of imaging and assisted reproduction. In: Rizk B (ed) Ultrasonography in reproductive medicine and infertility. Cambridge University Press, Cambridge pp. 1–10 (Chapter 1)

    Chapter  Google Scholar 

  2. Brown WW III (2010) Sonohysterography. In: Rizk B (ed) Ultrasonography in reproductive medicine and infertility. Cambridge University Press, Cambridge, pp 42–53 (Chapter 5)

    Chapter  Google Scholar 

  3. Rizk B, Sallam HN (2012) The uterine factor in infertility. In: Rizk B, Sallam HN (eds) Clinical infertility and in vitro fertilization. Jaypee Brothers Medical Publishers, St. Louis, pp 84–96 (Chapter 7)

    Google Scholar 

  4. de Zeigler D, Fraisse T et al (2008) Endometrial receptivity. In: Rizk B, Garcia-Velasco J, Makrigiannakis A (eds) Infertility and assisted reproduction. Cambridge University Press, New York, pp 38–45 (Chapter 4)

    Google Scholar 

  5. Jauniaux E, Rizk B (eds) (2012) Pregnancy after reproductive technology. Cambridge University Press, Cambridge

    Google Scholar 

  6. Garcia-Velasco JA, Rizk B (eds) (2010) Endometriosis: current management and future trends. Jaypee Medical Publishers, St. Louis

    Google Scholar 

  7. Gardner DK, Rizk B, Falcone T (eds) (2011) Human assisted reproductive technology: future trends in laboratory and clinical practice (Cambridge Medicine). Cambridge University Press, Cambridge

    Google Scholar 

  8. Aboulghar M, Rizk B (eds) (2011) Ovarian stimulation. Cambridge University Press, Cambridge

    Google Scholar 

  9. Dickey RP (2010) The endometrium. In: Rizk B (ed) Ultrasonography in reproductive medicine and infertility. Cambridge University Press, Cambridge, pp 97–102 (Chapter 12)

    Chapter  Google Scholar 

  10. Sugino N (2007) The role of oxygen radical-mediated signaling pathways in endometrial function. Placenta 28(Suppl A), Trophoblast Res 21:S133–S136

    Google Scholar 

  11. Sugino N, Shimamura K, Takiguchi S et al (1996) Changes in activity of superoxide dismutase in the human endometrium throughout the menstrual cycle and in early pregnancy. Hum Reprod 11:1073–1078

    Article  PubMed  CAS  Google Scholar 

  12. Sugino N, Karube-Harada A, Kashida S et al (2001) Reactive oxygen species stimulate prostaglandin F2α production in human endometrial stromal cells in vitro. Hum Reprod 16:1797–1801

    Article  PubMed  CAS  Google Scholar 

  13. Sugino N, Nakata M, Kashida S et al (2000) Decreased superoxide dismutase expression and increased concentrations of lipid peroxide and prostaglandin F2-α in the decidua of failed pregnancy. Mol Hum Reprod 6:642–647

    Article  PubMed  CAS  Google Scholar 

  14. Sugino N, Karube-Harada A, Sakata A et al (2002) Different mechanisms for the induction of copper-zinc superoxide dismutase and manganese superoxide dismutase by progesterone human endometrial stromal cells. Hum Reprod 17:1709–1714

    Article  PubMed  CAS  Google Scholar 

  15. Rizk B (2006) Ovarian hyperstimulation syndrome: epidemiology, pathophysiology, prevention and management. Cambridge University Press, Cambridge

    Google Scholar 

  16. Rizk B (2009) Genetics of ovarian hyperstimulation syndrome. Reprod Biomed Online 19:14–27

    Article  PubMed  CAS  Google Scholar 

  17. Rizk B, Smitz J (1992) Ovarian hyperstimulation syndrome after superovulation using GnRH agonists for IVF and related procedures. Hum Reprod 7:320–327

    PubMed  CAS  Google Scholar 

  18. Kajihara T, Uchino S, Itakura A (2011) Human chorionic gonadotropin confers resistance to oxidative stress-induced apoptosis in decidualizing human endometrial stromal cells. Fertil Steril 95(4):1302–1307 Mar 15

    Article  PubMed  CAS  Google Scholar 

  19. Leitao B, Jones MC, Fusi L et al (2010) Silencing of the JNK pathway maintains progesterone receptor activity in decidualizing human endometrial stromal cells exposed to oxidative stress signals. FASEB J 24(5):1541–1551 May

    Article  PubMed  CAS  Google Scholar 

  20. Ax Liu, He WH, Yin LJ, Lv PP et al (2011) Sustained endoplasmic reticulum stress as a cofactor of oxidative stress in decidual cells from patients with early pregnancy loss. J Clin Endocrinol Metab 96(3):E493–E497

    Article  Google Scholar 

  21. Brosens JJ, Wilson MS, Lam EW (2009) FOXO transcription factors: from cell fate decisions to regulation of human female reproduction. Adv Exp Med Biol 665:227–241

    Article  PubMed  CAS  Google Scholar 

  22. Cheong AW, Lee YL, Liu WM et al (2009) Oviductal microsomal epoxide hydrolase (EPHX1) reduce reactive oxygen species (ROS) level and enhances preimplantation mouse embryo development. Biol Reprod 81(1):126–132

    Article  PubMed  CAS  Google Scholar 

  23. Hirota Y, Acar N, Tranguch S et al (2010) Uterine FK506-binding protein 52 (FKBP52)-peroxiredoxin (PRDX6) signaling protects pregnancy from overt oxidative stress. Proc Natl Acad Sci USA 107(35):15577–15582

    Article  PubMed  CAS  Google Scholar 

  24. Burton GJ, Jauniaux E, Charnock-Jones DS (2010) The influence of the intrauterine environment on human placental development. Int J Dev Biol 54(2–3):303–312

    Article  PubMed  CAS  Google Scholar 

  25. Burton GJ, Woods AW, Jauniaux E et al (2009) Rheological and physiological consequences of conversion of the maternal spiral arteries for uteroplacental blood flow during human pregnancy. Placenta 30(6):473–482

    Article  PubMed  CAS  Google Scholar 

  26. Burton GJ, Yung HW, Cindrova-Davies T, Charmock-Jones DS (2009) Placental endoplasmic reticulum stress and oxidative stress in the pathophysiology of unexplained intrauterine growth restriction and early onset preeclampsia. Placenta 30(Suppl A):S43–S48

    Article  PubMed  Google Scholar 

  27. Pejic S, Todorovic A, Stojiljokvic V (2009) Antioxidant enzymes and lipid peroxidation in endometrium of patients with polyps, myoma, hyperplasia and adenocarcinoma. Reprod Biol Endocrinol 23(7):149 Dec

    Article  Google Scholar 

  28. Gupta S, Sekhon L, Aziz N, Agarwal A (2008) The impact of oxidative stress on female reproduction and ART: an evidence-based review. In: Rizk B, Garcia-Velasco J, Makrigiannakis A (eds) Infertility and assisted reproduction. Cambridge University Press, New York, pp 629–642 (Chapter 64)

    Google Scholar 

  29. Lee SR, Kim SH, Lee HW et al (2009) Increased expression of glutathione by estradiol, tumor necrosis factor-alpha, and interleukin 1-beta in endometrial stromal cells. Am J Reprod Immunol 62(6):352–356 Dec

    Article  PubMed  CAS  Google Scholar 

  30. Kobayashi H, Yamada Y, Kanayama S et al (2009) The role of iron in the pathogenesis of endometriosis. Gynecol Endocrinol 25(1):39–52 Jan

    Article  PubMed  CAS  Google Scholar 

  31. Gupta S (2012) Oxidative stress and and its role in endometriosis-mechanistic and therapeutic implications. In: Rizk B, Sallam H (eds) Clinical infertility and in vitro fertilization. Jaypee Brothers Medical Publishers, New Delhi, pp 316–325 (Chapter 37)

    Google Scholar 

  32. Park JK, Song M, Dominguez CE et al (2006) Glycodelin mediates the increase in vascular endothelial growth factor in response to oxidative stress in the endometrium. Am J Obstet Gynecol 195(6):1772–1777

    Article  PubMed  CAS  Google Scholar 

  33. Seo SK, Yang HI, Lee KE et al (2010) The roles of thioredoxin and thioredoxin-binding protein-2 in endometriosis. Hum Reprod 25(5):1251–1258

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christina Talerico .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rizk, B., Badr, M., Talerico, C. (2013). Oxidative Stress and The Endometrium. In: Agarwal, A., Aziz, N., Rizk, B. (eds) Studies on Women's Health. Oxidative Stress in Applied Basic Research and Clinical Practice. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-041-0_3

Download citation

Publish with us

Policies and ethics