Skip to main content

Mosquito Transgenic Technologies to Reduce Plasmodium Transmission

  • Protocol
  • First Online:
Malaria

Part of the book series: Methods in Molecular Biology ((MIMB,volume 923))

Abstract

The ability to introduce genetic constructs of choice into the genome of Anopheles mosquitoes provides a valuable tool to study the molecular interactions between the Plasmodium parasite and its insect host. In the long term, this technology could potentially offer new ways to control vector-borne diseases through the suppression of target mosquito populations or through the introgression of traits that preclude pathogen transmission. Here, we describe in detail protocols for the generation of transgenic Anopheles gambiae mosquitoes based on germ-line transformation using either modified transposable elements or the site-specific PhiC31 recombinase.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jasinskiene N et al (1998) Stable transformation of the yellow fever mosquito, Aedes aegypti, with the Hermes element from the housefly. Proc Natl Acad Sci USA 95:3743–3747

    Article  PubMed  CAS  Google Scholar 

  2. Coates CJ et al (1998) Mariner transposition and transformation of the yellow fever mosquito, Aedes aegypti. Proc Natl Acad Sci USA 95:3748–3751

    Article  PubMed  CAS  Google Scholar 

  3. Catteruccia F et al (2000) Stable germline transformation of the malaria mosquito Anopheles stephensi. Nature 405:959–962

    Article  PubMed  CAS  Google Scholar 

  4. Kokoza V et al (2001) Efficient transformation of the yellow fever mosquito Aedes aegypti using the piggyBac transposable element vector pBac[3xP3-EGFP afm]. Insect Biochem Mol Biol 31:1137–1143

    Article  PubMed  CAS  Google Scholar 

  5. Nolan T et al (2002) piggyBac-mediated germline transformation of the malaria mosquito Anopheles stephensi using the red fluorescent protein dsRED as a selectable marker. J Biol Chem 277:8759–8762

    Article  PubMed  CAS  Google Scholar 

  6. Allen ML et al (2001) Stable, germ-line transformation of Culex quinquefasciatus (Diptera: Culicidae). J Med Entomol 38:701–710

    Article  PubMed  CAS  Google Scholar 

  7. Grossman GL et al (2001) Germline transformation of the malaria vector, Anopheles gambiae, with the piggyBac transposable element. Insect Mol Biol 10:597–604

    Article  PubMed  CAS  Google Scholar 

  8. Perera OP et al (2002) Germ-line transformation of the South American malaria vector, Anopheles albimanus, with a piggyBac/EGFP transposon vector is routine and highly efficient. Insect Mol Biol 11:291–297

    Article  PubMed  CAS  Google Scholar 

  9. Handler AM (2001) A current perspective on insect gene transformation. Insect Biochem Mol Biol 31:111–128

    Article  PubMed  CAS  Google Scholar 

  10. Tamura T et al (2000) Germline transformation of the silkworm Bombyx mori L. using a piggyBac transposon-derived vector. Nat Biotechnol 18:81–84

    Article  PubMed  CAS  Google Scholar 

  11. Nolan T et al (2011) Analysis of two novel midgut-specific promoters driving transgene expression in Anopheles stephensi mosquitoes. PLoS One 6:e16471

    Article  PubMed  CAS  Google Scholar 

  12. Meredith JM et al (2011) Site-specific integration and expression of an anti-malarial gene in transgenic Anopheles gambiae significantly reduces Plasmodium infections. PLoS One 6:e14587

    Article  PubMed  CAS  Google Scholar 

  13. Thorpe HM et al (2000) Control of directionality in the site-specific recombination system of the Streptomyces phage phi C31. Mol Microbiol 38:232–241

    Article  PubMed  CAS  Google Scholar 

  14. Chater KF et al (1981) Dispensable sequences and packaging constraints of DNA from the Streptomyces temperate phage phi C31. Gene 15:249–256

    Article  PubMed  CAS  Google Scholar 

  15. Venken KJ et al (2006) P[acman]: a BAC transgenic platform for targeted insertion of large DNA fragments in D. melanogaster. Science 314:1747–1751

    Article  PubMed  CAS  Google Scholar 

  16. Geurts AM et al (2003) Gene transfer into genomes of human cells by the sleeping beauty transposon system. Mol Ther 8:108–117

    Article  PubMed  CAS  Google Scholar 

  17. Moreira LA et al (2002) Bee venom phospholipase inhibits malaria parasite development in transgenic mosquitoes. J Biol Chem 277:40839–40843

    Article  PubMed  CAS  Google Scholar 

  18. Ito J et al (2002) Transgenic anopheline mosquitoes impaired in transmission of a malaria parasite. Nature 417:452–455

    Article  PubMed  CAS  Google Scholar 

  19. Adelman ZN et al (2002) Development and applications of transgenesis in the yellow fever mosquito, Aedes aegypti. Mol Biochem Parasitol 121:1–10

    Article  PubMed  CAS  Google Scholar 

  20. Kokoza V et al (2001) Efficient transformation of the yellow fever mosquito Aedes aegypti using the piggyBac transposable element vector pBac[3xP3-EGFP afm]. Insect Biochem Mol Biol 31:1137–1143

    Article  PubMed  CAS  Google Scholar 

  21. Jasinskiene N et al (2000) Structure of hermes integrations in the germline of the yellow fever mosquito, Aedes aegypti. Insect Mol Biol 9:11–18

    Article  PubMed  CAS  Google Scholar 

  22. Pinkerton AC et al (2000) Green fluorescent protein as a genetic marker in transgenic Aedes aegypti. Insect Mol Biol 9:1–10

    Article  PubMed  CAS  Google Scholar 

  23. Moreira LA et al (2000) Robust gut-specific gene expression in transgenic Aedes aegypti mosquitoes. Proc Natl Acad Sci USA 97:10895–10898

    Article  PubMed  CAS  Google Scholar 

  24. Coates CJ et al (2000) Purified mariner (Mos1) transposase catalyzes the integration of marked elements into the germ-line of the yellow fever mosquito, Aedes aegypti. Insect Biochem Mol Biol 30:1003–1008

    Article  PubMed  CAS  Google Scholar 

  25. Nimmo DD et al (2006) High efficiency site-specific genetic engineering of the mosquito genome. Insect Mol Biol 15:129–136

    Article  PubMed  CAS  Google Scholar 

  26. Franz AW et al (2011) Comparison of transgene expression in Aedes aegypti generated by mariner Mos1 transposition and PhiC31 site-directed recombination. Insect Mol Biol 20:587–598

    Article  PubMed  CAS  Google Scholar 

  27. Windbichler N et al (2008) Targeting the X chromosome during spermatogenesis induces Y chromosome transmission ratio distortion and early dominant embryo lethality in Anopheles gambiae. PLoS Genet 4:e1000291

    Article  PubMed  Google Scholar 

  28. Lobo NF et al (2006) High efficiency germ-line transformation of mosquitoes. Nat Protoc 1:1312–1317

    Article  PubMed  CAS  Google Scholar 

  29. Windbichler N et al (2011) A synthetic homing endonuclease-based gene drive system in the human malaria mosquito. Nature 473:212–215

    Article  PubMed  CAS  Google Scholar 

  30. Groth AC et al (2004) Construction of ­transgenic Drosophila by using the site-specific integrase from phage phiC31. Genetics 166:1775–1782

    Article  PubMed  CAS  Google Scholar 

  31. O’Neill SL et al (2009) Stable introduction of a life-shortening Wolbachia infection into the mosquito Aedes aegypti. Science 323:141–144

    Article  PubMed  Google Scholar 

  32. Bossin H (2005) Microinjection methods for Anopheles embryos. MR4 vector component technical manual. Malaria Research and Reference Reagent Resource Center, Manassas (VA)

    Google Scholar 

  33. Handler AM et al (1998) The lepidopteran transposon vector, piggyBac, mediates germ-line transformation in the Mediterranean fruit fly. Proc Natl Acad Sci USA 95:7520–7525

    Article  PubMed  CAS  Google Scholar 

  34. Sambrook J et al (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

    Google Scholar 

  35. Papathanos PA et al (2009) The vasa regulatory region mediates germline expression and maternal transmission of proteins in the malaria mosquito Anopheles gambiae: a versatile tool for genetic control strategies. BMC Mol Biol 10:65

    Article  PubMed  Google Scholar 

  36. Kim W et al (2004) Ectopic expression of a cecropin transgene in the human malaria vector mosquito Anopheles gambiae (Diptera: Culicidae): effects on susceptibility to Plasmodium. J Med Entomol 41:447–455

    Article  PubMed  CAS  Google Scholar 

  37. Corby-Harris V et al (2010) Activation of Akt signaling reduces the prevalence and intensity of malaria parasite infection and lifespan in Anopheles stephensi mosquitoes. PLoS Pathog 6:e1001003

    Article  PubMed  Google Scholar 

  38. Isaacs AT et al (2011) Engineered resistance to Plasmodium falciparum development in transgenic Anopheles stephensi. PLoS Pathog 7:e1002017

    Article  PubMed  CAS  Google Scholar 

  39. Abraham EG et al (2005) Driving midgut-specific expression and secretion of a foreign protein in transgenic mosquitoes with AgAper1 regulatory elements. Insect Mol Biol 14:271–279

    Article  PubMed  CAS  Google Scholar 

  40. Jasinskiene N et al (2007) Genetic control of malaria parasite transmission: threshold levels for infection in an avian model system. Am J Trop Med Hyg 76:1072–1078

    PubMed  CAS  Google Scholar 

  41. Lombardo F et al (2005) An Anopheles gambiae salivary gland promoter analysis in Drosophila melanogaster and Anopheles stephensi. Insect Mol Biol 14:207–216

    Article  PubMed  CAS  Google Scholar 

  42. Yoshida S, Watanabe H (2006) Robust salivary gland-specific transgene expression in Anopheles stephensi mosquito. Insect Mol Biol 15:403–410

    Article  PubMed  CAS  Google Scholar 

  43. Dinglasan RR et al (2003) Monoclonal antibody MG96 completely blocks Plasmodium yoelii development in Anopheles stephensi. Infect Immun 71:6995–7001

    Article  PubMed  CAS  Google Scholar 

  44. Yoshida S et al (1999) A single-chain antibody fragment specific for the Plasmodium berghei ookinete protein Pbs21 confers transmission blockade in the mosquito midgut. Mol Biochem Parasitol 104:195–204

    Article  PubMed  CAS  Google Scholar 

  45. Li F et al (2005) An anti-Chitinase malaria transmission-blocking single-chain antibody as an effector molecule for creating a Plasmodium falciparum-refractory mosquito. J Infect Dis 192:878–887

    Article  PubMed  CAS  Google Scholar 

  46. Lal AA et al (2001) Anti-mosquito midgut antibodies block development of Plasmodium falciparum and Plasmodium vivax in multiple species of Anopheles mosquitoes and reduce vector fecundity and survivorship. Proc Natl Acad Sci USA 98:5228–5233

    Article  PubMed  CAS  Google Scholar 

  47. Arrighi RB et al (2005) Laminin and the malaria parasite’s journey through the mosquito midgut. J Exp Biol 208:2497–2502

    Article  PubMed  Google Scholar 

  48. Osta MA et al (2004) Effects of mosquito genes on Plasmodium development. Science 303:2030–2032

    Article  PubMed  CAS  Google Scholar 

  49. Blandin S et al (2004) Complement-like protein TEP1 is a determinant of vectorial capacity in the malaria vector Anopheles gambiae. Cell 116:661–670

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Crisanti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Fuchs, S., Nolan, T., Crisanti, A. (2012). Mosquito Transgenic Technologies to Reduce Plasmodium Transmission. In: Ménard, R. (eds) Malaria. Methods in Molecular Biology, vol 923. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-026-7_41

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-026-7_41

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-025-0

  • Online ISBN: 978-1-62703-026-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics