Skip to main content

Coarse-Grained Models for Protein Folding and Aggregation

  • Protocol
  • First Online:
Biomolecular Simulations

Part of the book series: Methods in Molecular Biology ((MIMB,volume 924))

Abstract

Coarse-grained models for protein folding and aggregation are used to explore large dimension scales and timescales that are inaccessible to all-atom models in explicit aqueous solution. Combined with enhanced configuration search methods, these simplified models with various levels of granularity offer the possibility to determine equilibrium structures, compare folding kinetics and thermodynamics with experiments for single proteins and understand the dynamic assembly of amyloid proteins leading to neurodegenerative diseases. I shall describe recent progress in developing such models, and discuss their potentials and limitations in probing the folding and misfolding of proteins with computer simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anfinsen CB (1973) Principles that govern the folding of proteins. Science 181:223–230

    Article  PubMed  CAS  Google Scholar 

  2. Andreeva A, Howorth D, Chandonia JM, Brenner SE, Hubbard TJ, Chothia C, Murzin A (2008) Data growth and its impact on the SCOP database: new developments. Nucleic Acids Res 36:D419–D425, Database issue

    Article  PubMed  CAS  Google Scholar 

  3. Wright PE, Dyson HJ (2009) Linking binding and folding. Curr Opin Struct Biol 19:31–38

    Article  PubMed  CAS  Google Scholar 

  4. Goldschmidt L, Teng PK, Riek R, Eisenberg D (2010) Identifying the amylome, proteins capable of forming amyloid-like fibrils. Proc Natl Acad Sci U S A 107(8):3487–3492

    Article  PubMed  CAS  Google Scholar 

  5. Kim SJ, Born B, Havenith M, Gruebele M (2008) Real-time detection of protein-water dynamics upon protein folding by Terahertz absorption. Angew Chem Int Ed Engl 47(34):6486–6489

    Article  PubMed  CAS  Google Scholar 

  6. Karplus M, McCammon JA (2002) Molecular dynamics simulations of biomolecules. Nat Struct Biol 9(9):646–652

    Article  PubMed  CAS  Google Scholar 

  7. Sugita Y, Okamoto Y (1999) Replica exchange molecular dynamics method for protein folding. Chem Phys Lett 329:261–270

    Article  Google Scholar 

  8. Berg BA, Neuhaus T (1992) Multicanonical ensemble: a new approach to simulate first-order phase transitions. Phys Rev Lett 68:9–12

    Article  PubMed  Google Scholar 

  9. Born M, Oppenheimer R (1927) Zur quantentheorie der molekeln. Ann Phys Leipzig 84:457

    Article  CAS  Google Scholar 

  10. Duan Y, Kollman PA (1998) Pathways to a protein folding intermediate observed in a 1-microsecond simulation in aqueous solution. Science 282:740–744

    Article  PubMed  CAS  Google Scholar 

  11. Jayachandran G, Vishal V, Pande VS (2006) Using massively parallel simulation and Markovian models to study protein folding: examining the dynamics of the villin headpiece. J Chem Phys 124:164902

    Article  PubMed  Google Scholar 

  12. Wriggers W, Stafford KA, Shan Y, Piana S, Maragakis P, Lindorff-Larsen K, Miller PJ, Gullingsrud J, Rendleman CA, Eastwood MP, Dror RO, Shaw DE (2009) Automated event detection and activity monitoring in long molecular dynamics simulations. J Chem Theory Comput 5:2595–2605

    Article  CAS  Google Scholar 

  13. Fukunishi H, Watanabe O, Takada S (2002) On the Hamiltonian replica exchange method for efficient sampling of biomolecular systems: application to protein structure. J Chem Phys 116(20):9058–9067

    Article  CAS  Google Scholar 

  14. Sgourakis NG, Yan Y, McCallum SA, Wang C, Garcia AE (2007) The Alzheimer’s peptides Abeta40 and 42 adopt distinct conformations in water: a combined MD/NMR study. J Mol Biol 368(5):1448–1457

    Article  PubMed  CAS  Google Scholar 

  15. De Simone A, Derreumaux P (2010) Low molecular weight oligomers of amyloid peptides display beta-barrel conformations: a replica exchange molecular dynamics study in explicit solvent. J Chem Phys 132(16):165103

    Article  PubMed  Google Scholar 

  16. Mucke L (2009) Neuroscience: Alzheimer’s disease. Nature 461(7266):895–897

    Article  PubMed  CAS  Google Scholar 

  17. Levitt M, Warshel A (1975) Computer simulation of protein folding. Nature 253:694–698

    Article  PubMed  CAS  Google Scholar 

  18. Chebaro Y, Dong X, Laghaei R, Derreumaux P, Mousseau N (2009) Replica exchange molecular dynamics simulations of coarse-grained proteins in implicit solvent. J Phys Chem B 113(1):267–274

    Article  PubMed  CAS  Google Scholar 

  19. Clementi C (2007) Coarse-grained models of protein folding: toy models or predictive tools? Curr Opin Struct Biol 17:1–6

    Article  Google Scholar 

  20. Tozzini V (2005) Coarse-grained models for proteins. Curr Opin Struct Biol 15:144–150

    Article  PubMed  CAS  Google Scholar 

  21. Chu J-W, Voth GA (2007) Coarse-grained free energy functions for studying protein conformational changes: a double-well network model. Biophys J 93:3860–3871

    Article  PubMed  CAS  Google Scholar 

  22. Khalid S, Bond PJ, Holyoake J, Hawtin RW, Sansom MS (2008) DNA and lipid bilayers: self-assembly and insertion. J R Soc Interface 5(Suppl 3):S241–S250

    Article  PubMed  CAS  Google Scholar 

  23. Pasquali S, Derreumaux P (2010) HiRE-RNA: a high-resolution coarse-grained energy model for RNA. J Phys Chem B 114(37):11957–66

    Article  PubMed  CAS  Google Scholar 

  24. Ueda Y, Taketomi H, Go N (1978) Studies on protein folding, unfolding and fluctuations by computer simulation II. A three-dimensional lattice model of lysozyme. Biopolymers 17:1531–1548

    Article  CAS  Google Scholar 

  25. Dill KA, Chan HS (1997) From Levinthal to pathways to funnels. Nat Struct Biol 4:10–19

    Article  PubMed  CAS  Google Scholar 

  26. Bryngelson JD, Onuchic JN, Socci ND, Wolynes JD (1995) Funnels, pathways, and the energy landscape of protein folding: a synthesis. Proteins 21:167–195

    Article  PubMed  CAS  Google Scholar 

  27. Shakhnovich E (2006) Protein folding thermodynamics and dynamics: where physics, chemistry, and biology meet. Chem Rev 106:1559–1588

    Article  PubMed  CAS  Google Scholar 

  28. De Sancho D, Doshi U, Munoz V (2009) Protein folding rates and stability: how much is there beyond size? J Am Chem Soc 131:2074–2075

    Article  PubMed  Google Scholar 

  29. Qi Y, Huang Y, Liang H, Liu Z, Lai L (2010) Folding simulations of a de novo designed protein with a betaalphabeta fold. Biophys J 98(2):321–329

    Article  PubMed  CAS  Google Scholar 

  30. Cheung MS, Garcia AE, Onuchic JE (2002) Protein folding mediated by solvation: water expulsion and formation of the hydrophobic core occur after the structural collapse. Proc Natl Acad Sci U S A 99:685–690

    Article  PubMed  CAS  Google Scholar 

  31. Ferguson A, Liu Z, Chan HS (2009) Desolvation barrier effects are a likely contributor to the remarkable diversity in the folding rates of small proteins. J Mol Biol 389(3):619–636

    Article  PubMed  CAS  Google Scholar 

  32. Liu Z, Chan HS (2005) Solvation and desolvation effects in protein folding: native flexibility, kinetic cooperativity and enthalpic barriers under isostability conditions. Phys Biol 2(4):S75–S85

    Article  PubMed  CAS  Google Scholar 

  33. Honeycutt JD, Thirumalai D (1990) Metastability of the folded states of globular proteins. Proc Natl Acad Sci U S A 87:3526–3529

    Article  PubMed  CAS  Google Scholar 

  34. Jewett AI, Baumketner A, Shea JE (2004) Accelerated folding in the weak hydrophobic environment of a chaperonin cavity: creation of an alternate fast folding pathway. Proc Natl Acad Sci U S A 101(36):13192–13197

    Article  PubMed  CAS  Google Scholar 

  35. Cheung MS, Klimov D, Thirumalai D (2005) Molecular crowding enhances native state stability and refolding rates. Proc Natl Acad Sci U S A 102:4753–4758

    Article  PubMed  CAS  Google Scholar 

  36. Cheung MS, Thirumalai D (2007) Effects of crowding and confinement on the structures of the transition state ensemble in proteins. J Phys Chem B 11:8250–8257

    Article  Google Scholar 

  37. Das P, Matysiak S, Clementi C (2005) Balancing energy and entropy: a minimalist model for the characterization of protein folding landscapes. Proc Natl Acad Sci U S A 102:10141–10146

    Article  PubMed  CAS  Google Scholar 

  38. Bellesia G, Jewett AI, Shea J-E (2010) Sequence periodicity and secondary structure propensity in model proteins. Protein Sci 19:141–154

    Article  PubMed  CAS  Google Scholar 

  39. Yap E-H, Fawzi NL, Head-Gordon T (2008) A coarse-grained α-carbon protein model with anisotropic hydrogen-bonding. Proteins 70:626–638

    Article  PubMed  CAS  Google Scholar 

  40. Miyazawa S, Jernigan RL (1999) Self-consistent estimation of inter-residue protein contact energies based on an equilibrium mixture approximation of residues. Proteins 34:49–68

    Article  PubMed  CAS  Google Scholar 

  41. Hagai T, Levy Y (2008) Folding of elongated proteins: conventional or anomalous? J Am Chem Soc 130:14253–14262

    Article  PubMed  CAS  Google Scholar 

  42. Moritsugu K, Smith JC (2008) REACH Coarse-grained biomolecular simulation: transferability between different protein structural classes. Biophys J 95:1639–1648

    Article  PubMed  CAS  Google Scholar 

  43. Alemani D, Collu F, Cascella M, Dal Peraro M (2010) A nonradial coarse-grained potential for proteins produces naturally stable secondary structure elements. J Chem Theory Comput 6:315–324

    Article  CAS  Google Scholar 

  44. Sasaki TN, Cetin H, Sasai M (2008) A coarse-grained Langevin molecular dynamics approach to de novo protein structure prediction. Biochem Biophys Res Commun 369(2):500–506

    Article  PubMed  CAS  Google Scholar 

  45. Han W, Wan C, Wu Y (2008) Toward a coarse-grained protein model coupled with a coarse-grained solvent model: solvation free energies of amino acid side chains. J Chem Theory Comput 4:1891–1901

    Article  CAS  Google Scholar 

  46. Thorpe IF, Zhou J, Voth GA (2008) Peptide folding using multiscale coarse-grained models. J Phys Chem B 112:13079–13090

    Article  PubMed  CAS  Google Scholar 

  47. Basdevant N, Borgis D, Ha-Duong T (2007) A coarse-grained protein-protein potential derived from an all-atom force field. J Phys Chem B 111:9390–9399

    Article  PubMed  CAS  Google Scholar 

  48. Zacharias M (2003) Protein-protein docking with a reduced protein model accounting for side-chain flexibility. Protein Sci 12:1271–1282

    Article  PubMed  CAS  Google Scholar 

  49. Ha-Duong T (2010) Protein backbone dynamics simulations using coarse-grained bonded potentials and simplified hydrogen bonds. J Chem Theory Comput 6:761–773

    Article  Google Scholar 

  50. Majek P, Elber R (2009) A coarse-grained potential for fold recognition and molecular dynamics simulations of proteins. Proteins 76:822–836

    Article  PubMed  CAS  Google Scholar 

  51. De Mori G, Colombo G, Micheletti C (2005) Study of the villin headpiece folding dynamics by combining coarse-grained Monte Carlo evolution and all-atom molecular dynamics. Proteins 58:459–471

    Article  PubMed  Google Scholar 

  52. Maisuradze GG, Senet P, Czaplewski C, Liwo A, Scheraga HA (2010) Investigation of protein folding by coarse-grained molecular dynamics with the UNRES force field. J Phys Chem A 114:4471–4485

    Article  PubMed  CAS  Google Scholar 

  53. Czaplewski C, Kalinowski S, Liwo A, Scheraga HA (2009) Application of multiplexed replica exchange molecular dynamics to the UNRES force field: tests with α and α + β proteins. J Chem Theory Comput 5:627–640

    Article  PubMed  CAS  Google Scholar 

  54. Cossio P, Marinelli F, Laio A, Pietrucci F (2010) Optimizing the performance of bias-exchange metadynamics: folding a 48-residue LysM domain using a coarse-grained model. J Phys Chem B 114:3259–3265

    Article  PubMed  CAS  Google Scholar 

  55. DeVane R, Shinoda W, Moore PB, Klein ML (2009) Transferable coarse grain non-bonded interaction model for amino acids. J Chem Theory Comput 5:2115–2124

    Article  PubMed  CAS  Google Scholar 

  56. Monticelli L, Kandasamy SK, Periole X, Larson RG, Tieleman DP, Marrink S (2008) The MARTINI coarse-grained force field: extension to proteins. J Chem Theory Comput 4:819–834

    Article  CAS  Google Scholar 

  57. Fujitsuka Y, Takada S, Luthey-Schulten ZA, Wolynes PG (2004) Optimizing physical energy functions for protein folding. Proteins 54:88–103

    Article  PubMed  CAS  Google Scholar 

  58. Chikenji G, Fujitsuka Y, Takada S (2006) Shaping up the protein folding funnel by local interaction: lesson from a structure prediction study. Proc Natl Acad Sci U S A 103:3141–3146

    Article  PubMed  CAS  Google Scholar 

  59. Rohl CA, Strauss CE, Chivian D, Baker D (2004) Protein structure prediction using Rosetta. Methods Enzymol 383:66–93

    Article  PubMed  CAS  Google Scholar 

  60. Bradley P, Misura KM, Baker D (2005) Towards high-resolution de novo structure prediction for small proteins. Science 309:1868–1871

    Article  PubMed  CAS  Google Scholar 

  61. Bowman GR, Pande VS (2009) Simulated tempering yields insight into the low resolution Rosetta scoring functions. Proteins 74:777–788

    Article  PubMed  CAS  Google Scholar 

  62. Shmygelska A, Levitt M (2009) Generalized ensemble methods for de novo structure prediction. Proc Natl Acad Sci U S A 106:1415–1420

    Article  PubMed  CAS  Google Scholar 

  63. Das R, Andre I, Shen Y, Wu Y, Lemak A, Bansal S, Arrowsmith CH, Szyperski T, Baker D (2009) Simultaneous prediction of protein folding and docking at high resolution. Proc Natl Acad Sci U S A 106:18978–18983

    Article  PubMed  CAS  Google Scholar 

  64. Irback A, Sjunnesson F, Wallin S (2000) Three-helix-bundle protein in a Ramachandran model. Proc Natl Acad Sci U S A 97:13614–13618

    Article  PubMed  CAS  Google Scholar 

  65. Ding F, Buldyrev SV, Dokholyan NV (2005) Folding Trp-cage to NMR resolution native structure using a coarse-grained protein model. Biophys J 88:147–155

    Article  PubMed  CAS  Google Scholar 

  66. Smith AV, Hall CK (2001) α-Helix formation: discontinuous molecular dynamics on an intermediate-resolution protein model. Proteins 44:344–360

    Article  CAS  Google Scholar 

  67. Sharma S, Ding F, Nie H, Watson D, Unnithan A, Lopp J, Pozefsky D, Dokholyan NV (2006) iFold: a platform for interactive folding simulations of proteins. Bioinformatics 22(21):2693–2694

    Article  PubMed  CAS  Google Scholar 

  68. Ding F, LaRocque JJ, Dokholyan NV (2005) Direct observation of protein folding, aggregation, and a prion-like conformational conversion. J Biol Chem 280(48):40235–40240

    Article  PubMed  CAS  Google Scholar 

  69. Walsh DM, Klyubin I, Fadeeva JV, Cullen WK, Anwyl R, Wolfe MS, Rowan MJ, Selkoe DJ (2002) Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416:483–484

    Article  Google Scholar 

  70. Lesne S, Teng Koh M, Kotilinek L, Kayed R, Glabe CG, Yang A, Gallaher M, Ashe K (2006) A specific amyloid-β protein assembly in the brain impairs memory. Nature 440:352–357

    Article  PubMed  CAS  Google Scholar 

  71. Urbanc B, Cruz L, Yun S, Buldyrev SV, Bitan G, Teplow DB, Stanley HE (2004) In silico study of amyloid beta-protein folding and oligomerization. Proc Natl Acad Sci U S A 101:17345–17350

    Article  PubMed  CAS  Google Scholar 

  72. Urbanc B, Betnel M, Cruz L, Bitan G, Teplow DB (2010) Elucidation of amyloid beta-protein oligomerization mechanisms: discrete molecular dynamics study. J Am Chem Soc 132:4266–4280

    Article  PubMed  CAS  Google Scholar 

  73. Derreumaux P (2000) Generating ensemble averages for small proteins from extended conformations by Monte Carlo simulations. Phys Rev Lett 85:206–209

    Article  PubMed  CAS  Google Scholar 

  74. Maupetit J, Tuffery P, Derreumaux P (2007) A coarse-grained protein force field for folding and structure prediction. Proteins 69(2):394–408

    Article  PubMed  CAS  Google Scholar 

  75. Santini S, Mousseau N, Derreumaux P (2004) In silico assembly of Alzheimer’s Aβ16–22 peptide into β-sheets. J Am Chem Soc 126:11509–11516

    Article  PubMed  CAS  Google Scholar 

  76. Derreumaux P, Mousseau N (2007) Coarse-grained protein molecular dynamics simulations. J Chem Phys 126:025101–025106

    Article  PubMed  Google Scholar 

  77. Mousseau N, Derreumaux P (2005) Exploring the early steps of amyloid peptide aggregation by computers. Acc Chem Res 38:885–891

    Article  PubMed  CAS  Google Scholar 

  78. Lu Y, Derreumaux P, Guo Z, Mousseau N, Wei G (2009) Thermodynamics and dynamics of amyloid peptide oligomerisation is sequence-dependent. Proteins 5(4):954–963

    Article  Google Scholar 

  79. Melquiond A, Dong X, Mousseau N, Derreumaux P (2008) Role of the region 23–28 in Aβ fibril formation: insights from simulations of the monomers and dimers of Alzheimer’s peptides Aβ40 and Aβ42. Curr Alzheimer Res 5(3):244–250

    Article  PubMed  CAS  Google Scholar 

  80. Chebaro Y, Mousseau N, Derreumaux P (2009) Structures and thermodynamics of Alzheimer’s amyloid-β Aβ(16–35) monomer and dimer by replica exchange molecular dynamics simulations: implication for full-length Aβ fibrillation. J Phys Chem B 113:7668–7675

    Article  PubMed  CAS  Google Scholar 

  81. Maupetit J, Derreumaux P, Tuffery P (2009) PEP-FOLD: an online resource for de novo peptide structure prediction. Nucleic Acids Res 37:W498–W503, Web Server issue

    Article  PubMed  CAS  Google Scholar 

  82. Maupetit J, Derreumaux P, Tuffery P (2010) A fast method for large-scale de novo peptide and miniprotein structure prediction. J Comput Chem 31(4):726–738

    PubMed  CAS  Google Scholar 

  83. Audie J, Boyd C (2010) The synergistic use of computation, chemistry and biology to discover novel peptide-based drugs: the time is right. Curr Pharm Des 16(5):567–582

    Article  PubMed  CAS  Google Scholar 

  84. Chiti F, Dobson CM (2006) Protein misfolding, functional amyloid, and human disease. Annu Rev Biochem 75:333–366

    Article  PubMed  CAS  Google Scholar 

  85. De Beer SB, Vermeulen NP, Oostenbrick C (2010) The role of water molecules in computational drug design. Curr Top Med Chem 10(1):55–66

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Derreumaux .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Derreumaux, P. (2013). Coarse-Grained Models for Protein Folding and Aggregation. In: Monticelli, L., Salonen, E. (eds) Biomolecular Simulations. Methods in Molecular Biology, vol 924. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-017-5_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-017-5_22

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-016-8

  • Online ISBN: 978-1-62703-017-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics