Skip to main content

Derivation of Induced Pluripotent Stem Cells by Retroviral Gene Transduction in Mammalian Species

  • Protocol
  • First Online:
Genomic Imprinting

Abstract

Pluripotent stem cells can provide us with an enormous cell source for in vitro model systems for development. In 2006, new methodology was designed to generate pluripotent stem cells directly from somatic cells, and these cells were named induced pluripotent stem cells (iPSCs). This method consists of technically simple procedures: donor cell preparation, gene transduction, and isolation of embryonic stem cell-like colonies. The iPSC technology enables cell biologists not only to obtain pluripotent stem cells easily but also to study the reprogramming events themselves. Here, we describe the protocols to generate iPSCs from somatic origins by using conventional viral vectors. Specifically, we state the usage of three mammalian species: mouse, common marmoset, and human. As mouse iPSC donors, fibroblasts are easily prepared, while mesenchymal stem cells are expected to give rise to highly reprogrammed iPSCs efficiently. Common marmoset (Callithrix jacchus), a nonhuman primate, represents an alternative model to the usual laboratory animals. Finally, patient-specific human iPSCs give us an opportunity to examine the pathology and mechanisms of dysregulated genomic imprinting. The iPSC technology will serve as a valuable method for studying genomic imprinting, and conversely, the insights from these studies will offer valuable criteria to assess the potential of iPSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stadtfeld M, Hochedlinger K (2010) Induced pluripotency: history, mechanisms, and applications. Genes Dev 24:2239–2263

    Article  PubMed  CAS  Google Scholar 

  2. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    Article  PubMed  CAS  Google Scholar 

  3. Chamberlain SJ et al (2010) Induced pluripotent stem cell models of the genomic imprinting disorders Angelman and Prader-Willi syndromes. Proc Natl Acad Sci U S A 107:17668–17673

    Article  PubMed  CAS  Google Scholar 

  4. Horii T et al (2008) Loss of genomic imprinting in mouse parthenogenetic embryonic stem cells. Stem Cells 26:79–88

    Article  PubMed  CAS  Google Scholar 

  5. Do JT et al (2009) Generation of parthenogenetic induced pluripotent stem cells from parthenogenetic neural stem cells. Stem Cells 27:2962–2968

    PubMed  CAS  Google Scholar 

  6. Takahashi K (2010) Direct reprogramming 101. Dev Growth Differ 52:319–333

    Article  PubMed  CAS  Google Scholar 

  7. Humpherys D et al (2001) Epigenetic instability in ES cells and cloned mice. Science 293:95–97

    Article  PubMed  CAS  Google Scholar 

  8. Stadtfeld M et al (2010) Aberrant silencing of imprinted genes on chromosome 12qF1 in mouse induced pluripotent stem cells. Nature 465:175–181

    Article  PubMed  CAS  Google Scholar 

  9. Liu L et al (2010) Activation of the imprinted Dlk1-Dio3 region correlates with pluripotency levels of mouse stem cells. J Biol Chem 285:19483–19490

    Article  PubMed  CAS  Google Scholar 

  10. Pick M et al (2009) Clone- and gene-specific aberrations of parental imprinting in human induced pluripotent stem cells. Stem Cells 27:2686–2690

    Article  PubMed  CAS  Google Scholar 

  11. Toyooka Y et al (2003) Embryonic stem cells can form germ cells in vitro. Proc Natl Acad Sci U S A 100:11457–11462

    Article  PubMed  CAS  Google Scholar 

  12. Geijsen N et al (2004) Derivation of embryonic germ cells and male gametes from embryonic stem cells. Nature 427:148–154

    Article  PubMed  CAS  Google Scholar 

  13. Hubner K et al (2003) Derivation of oocytes from mouse embryonic stem cells. Science 300:1251–1256

    Article  PubMed  Google Scholar 

  14. Eguizabal C et al (2009) Generation of primordial germ cells from pluripotent stem cells. Differentiation 78:116–123

    Article  PubMed  CAS  Google Scholar 

  15. Hayashi K, Surani MA (2009) Self-renewing epiblast stem cells exhibit continual delineation of germ cells with epigenetic reprogramming in vitro. Development 136:3549–3556

    Article  PubMed  CAS  Google Scholar 

  16. Lavagnolli TM et al (2009) Presumptive germ cells derived from mouse pluripotent somatic cell hybrids. Differentiation 78:124–130

    Article  PubMed  CAS  Google Scholar 

  17. Imamura M et al (2010) Induction of primordial germ cells from mouse induced pluripotent stem cells derived from adult hepatocytes. Mol Reprod Dev 77:802–811

    Article  PubMed  CAS  Google Scholar 

  18. Park TS et al (2009) Derivation of primordial germ cells from human embryonic and induced pluripotent stem cells is significantly improved by coculture with human fetal gonadal cells. Stem Cells 27:783–795

    Article  PubMed  CAS  Google Scholar 

  19. Kim JB et al (2009) Oct4-induced pluripotency in adult neural stem cells. Cell 136:411–419

    Article  PubMed  CAS  Google Scholar 

  20. Honda A et al (2010) Generation of induced pluripotent stem cells in rabbits: potential experimental models for human regenerative medicine. J Biol Chem 285:31362–31369

    Article  PubMed  CAS  Google Scholar 

  21. Shimada H et al (2010) Generation of canine induced pluripotent stem cells by retroviral transduction and chemical inhibitors. Mol Reprod Dev 77:2

    Article  PubMed  CAS  Google Scholar 

  22. Nagy K et al (2011) Induced pluripotent stem cell lines derived from equine fibroblasts. Stem Cell Rev 7(3):693–702

    Article  PubMed  Google Scholar 

  23. Bao L et al (2011) Reprogramming of ovine adult fibroblasts to pluripotency via drug-inducible expression of defined factors. Cell Res 21(4):600–8

    Article  PubMed  CAS  Google Scholar 

  24. Tomioka I et al (2010) Generating induced pluripotent stem cells from common marmoset (Callithrix jacchus) fetal liver cells using defined factors, including Lin28. Genes Cells 15:959–969

    Article  PubMed  CAS  Google Scholar 

  25. Sumer H et al (2011) NANOG is a key factor for induction of pluripotency in bovine adult fibroblasts. J Anim Sci 89(9):2708–2716

    Article  PubMed  CAS  Google Scholar 

  26. Fujioka T et al (2004) A simple and efficient cryopreservation method for primate embryonic stem cells. Int J Dev Biol 48:1149–1154

    Article  PubMed  Google Scholar 

  27. Morikawa S et al (2009) Prospective identification, isolation, and systemic transplantation of multipotent mesenchymal stem cells in murine bone marrow. J Exp Med 206:2483–2496

    Article  PubMed  CAS  Google Scholar 

  28. Niibe K et al (2011) Purified mesenchymal stem cells Are an efficient source for iPS cell induction. PLoS One 6:e17610

    Article  PubMed  CAS  Google Scholar 

  29. Takahashi K et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872

    Article  PubMed  CAS  Google Scholar 

  30. Watanabe K et al (2007) A ROCK inhibitor permits survival of dissociated human embryonic stem cells. Nat Biotechnol 25:681–686

    Article  PubMed  CAS  Google Scholar 

  31. Liu H et al (2008) Generation of induced pluripotent stem cells from adult rhesus monkey fibroblasts. Cell Stem Cell 3:587–590

    Article  PubMed  CAS  Google Scholar 

  32. Sasaki E et al (2005) Establishment of novel embryonic stem cell lines derived from the common marmoset (Callithrix jacchus). Stem Cells 23:1304–1313

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT); the Ministry of Health, Labor, and Welfare; the Japan Society for the Promotion of Science (JSPS); the National Institute of Biomedical Innovation; the Project for Realization of Regenerative Medicine, MEXT; the Funding Program for World-leading Innovative R&D in Science and Technology (FIRST), JSPS; and Grant-in-Aid for Young Scientists (B).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideyuki Okano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Imamura, M. et al. (2012). Derivation of Induced Pluripotent Stem Cells by Retroviral Gene Transduction in Mammalian Species. In: Engel, N. (eds) Genomic Imprinting. Methods in Molecular Biology, vol 925. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-011-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-011-3_2

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-010-6

  • Online ISBN: 978-1-62703-011-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics