Skip to main content

Nonmammalian Parent-of-Origin Effects

  • Protocol
  • First Online:
Genomic Imprinting

Part of the book series: Methods in Molecular Biology ((MIMB,volume 925))

Abstract

Chromosomes acquire different epigenetic marks during oogenesis and spermatogenesis. After fertilization, if retained and selected, these differences may result in imprinting effects. Rather than being an oddity, imprinting effects have been found in many sexually reproducing organisms. Interestingly, imprinting can result in disparate effects under different selective forces. At the same time, epigenetic mechanisms and selective pressures shared by sexually reproducing organisms could underlie common imprinting effects. Large-scale studies are revealing that parent-of-origin effects are more common than previously thought and supporting the important contribution of imprinting to many traits and diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Crouse HV (1960) The controlling element in Sex chromosome behavior in sciara. Genetics 45:1429–1443

    PubMed  CAS  Google Scholar 

  2. Wolf JB, Wade MJ (2009) What are maternal effects (and what are they not)? Philos Trans R Soc Lond B Biol Sci 364:1107–1115

    Article  PubMed  Google Scholar 

  3. Hager R, Cheverud JM, Wolf JB (2008) Maternal effects as the cause of parent-of-origin effects that mimic genomic imprinting. Genetics 178:1755–1762

    Article  PubMed  Google Scholar 

  4. Wang AD, Sharp NP, Spencer CC, Tedman-Aucoin K, Agrawal AF (2009) Selection, epistasis, and parent-of-origin effects on deleterious mutations across environments in Drosophila melanogaster. Am Nat 174:863–874

    Article  PubMed  Google Scholar 

  5. Wittkopp PJ, Haerum BK, Clark AG (2006) Parent-of-origin effects on mRNA expression in Drosophila melanogaster not caused by genomic imprinting. Genetics 173:1817–1821

    Article  PubMed  CAS  Google Scholar 

  6. Bartolomei MS, Ferguson-Smith AC (2011) Mammalian genomic imprinting. Cold Spring Harb Perspect Biol 3(7). pii: a002592

    Google Scholar 

  7. Raissig MT, Baroux C, Grossniklaus U (2011) Regulation and flexibility of genomic imprinting during seed development. Plant Cell 23:16–26

    Article  PubMed  CAS  Google Scholar 

  8. Brun LO, Stuart J, Gaudichon V, Aronstein K, French-Constant RH (1995) Functional haplodiploidy: a mechanism for the spread of insecticide resistance in an important international insect pest. Proc Natl Acad Sci USA 92:9861–9865

    Article  PubMed  CAS  Google Scholar 

  9. Khosla S, Mendiratta G, Brahmachari V (2006) Genomic imprinting in the mealybugs. Cytogenet Genome Res 113:41–52

    Article  PubMed  CAS  Google Scholar 

  10. Anaka M, Lynn A, McGinn P, Lloyd VK (2009) Genomic imprinting in Drosophila has properties of both mammalian and insect imprinting. Dev Genes Evol 219:59–66

    Article  PubMed  Google Scholar 

  11. Lloyd VK, Sinclair DA, Grigliatti TA (1999) Genomic imprinting and position-effect variegation in Drosophila melanogaster. Genetics 151:1503–1516

    PubMed  CAS  Google Scholar 

  12. Deakin JE, Chaumeil J, Hore TA, Marshall Graves JA (2009) Unravelling the evolutionary origins of X chromosome inactivation in mammals: insights from marsupials and monotremes. Chromosome Res 17:671–685

    Article  PubMed  CAS  Google Scholar 

  13. Takagi N, Sasaki M (1975) Preferential inactivation of the paternally derived X chromosome in the extraembryonic membranes of the mouse. Nature 256:640–642

    Article  PubMed  CAS  Google Scholar 

  14. Wang X, Soloway PD, Clark AG (2010) Paternally biased X inactivation in mouse neonatal brain. Genome Biol 11:R79

    Article  PubMed  Google Scholar 

  15. Chadwick LH, Willard HF (2005) Genetic and parent-of-origin influences on X chromosome choice in Xce heterozygous mice. Mamm Genome 16:691–699

    Article  PubMed  CAS  Google Scholar 

  16. Menon DU, Meller VH (2010) Germ line imprinting in Drosophila: Epigenetics in search of function. Fly (Austin) 4:48–52

    CAS  Google Scholar 

  17. Kuhn DT, Packert G (1988) Paternal imprinting of inversion Uab1 causes homeotic transformations in Drosophila. Genetics 118:103–107

    PubMed  CAS  Google Scholar 

  18. Maggert KA, Golic KG (2002) The Y chromosome of Drosophila melanogaster exhibits chromosome-wide imprinting. Genetics 162:1245–1258

    PubMed  CAS  Google Scholar 

  19. Dorn R, Krauss V, Reuter G, Saumweber H (1993) The enhancer of position-effect variegation of Drosophila, E(var)3-93D, codes for a chromatin protein containing a conserved domain common to several transcriptional regulators. Proc Natl Acad Sci USA 90:11376–11380

    Article  PubMed  CAS  Google Scholar 

  20. Preis JI, Downes M, Oates NA, Rasko JE, Whitelaw E (2003) Sensitive flow cytometric analysis reveals a novel type of parent-of-origin effect in the mouse genome. Curr Biol 13:955–959

    Article  PubMed  CAS  Google Scholar 

  21. Sha K, Fire A (2005) Imprinting capacity of gamete lineages in Caenorhabditis elegans. Genetics 170:1633–1652

    Article  PubMed  CAS  Google Scholar 

  22. Goday C, Esteban MR (2001) Chromosome elimination in sciarid flies. Bioessays 23:242–250

    Article  PubMed  CAS  Google Scholar 

  23. Breeuwer JA, Werren JH (1990) Microorganisms associated with chromosome destruction and reproductive isolation between two insect species. Nature 346:558–560

    Article  PubMed  CAS  Google Scholar 

  24. Nur U, Werren JH, Eickbush DG, Burke WD, Eickbush TH (1988) A “selfish” B chromosome that enhances its transmission by eliminating the paternal genome. Science 240:512–514

    Article  PubMed  CAS  Google Scholar 

  25. Dobson SL, Tanouye MA (1998) Evidence for a genomic imprinting sex determination mechanism in Nasonia vitripennis (Hymenoptera; Chalcidoidea). Genetics 149:233–242

    PubMed  CAS  Google Scholar 

  26. Werren JH, Stouthamer R (2003) PSR (paternal sex ratio) chromosomes: the ultimate selfish genetic elements. Genetica 117:85–101

    Article  PubMed  CAS  Google Scholar 

  27. Prahlad V, Pilgrim D, Goodwin EB (2003) Roles for mating and environment in C. elegans sex determination. Science 302:1046–1049

    Article  PubMed  CAS  Google Scholar 

  28. Komaru A, Kawagishi T, Konishi K (1998) Cytological evidence of spontaneous androgenesis in the freshwater clam Corbicula leana Prime. Dev Genes Evol 208:46–50

    Article  PubMed  CAS  Google Scholar 

  29. Ishibashi R, Ookubo K, Aoki M, Utaki M, Komaru A, Kawamura K (2003) Androgenetic reproduction in a freshwater diploid clam Corbicula fluminea (Bivalvia: Corbiculidae). Zoolog Sci 20:727–732

    Article  PubMed  Google Scholar 

  30. Baker BS (1975) Paternal loss (pal): a meiotic mutant in Drosophila melanogaster causing loss of paternal chromosomes. Genetics 80:267–296

    PubMed  CAS  Google Scholar 

  31. Szabad J, Mathe E, Puro J (1995) Horka, a dominant mutation of Drosophila, induces nondisjunction and, through paternal effect, chromosome loss and genetic mosaics. Genetics 139:1585–1599

    PubMed  CAS  Google Scholar 

  32. Szalontai T, Gaspar I, Belecz I, Kerekes I, Erdelyi M, Boros I, Szabad J (2009) HorkaD, a chromosome instability-causing mutation in Drosophila, is a dominant-negative allele of Lodestar. Genetics 181:367–377

    Article  PubMed  CAS  Google Scholar 

  33. Lewis EB, Gencarella W (1952) Claret and non-disjunction in Drosophila melanogaster. Genetics 37:600–601

    Google Scholar 

  34. Gao G, Cheng Y, Wesolowska N, Rong YS (2011) Paternal imprint essential for the inheritance of telomere identity in Drosophila. Proc Natl Acad Sci USA 108:4932–4937

    Article  PubMed  CAS  Google Scholar 

  35. Baulch JE, Lowe XR, Bishop JB, Wyrobek AJ (1996) Evidence for a parent-of-origin effect on sperm aneuploidy in mice carrying Robertsonian translocations as analyzed by fluorescence in situ hybridization. Mutat Res 372:269–278

    Article  PubMed  CAS  Google Scholar 

  36. Naumova AK, Leppert M, Barker DF, Morgan K, Sapienza C (1998) Parental origin-­dependent, male offspring-specific transmission-ratio distortion at loci on the human X chromosome. Am J Hum Genet 62:1493–1499

    Article  PubMed  CAS  Google Scholar 

  37. Croteau S, Andrade MF, Huang F, Greenwood CM, Morgan K, Naumova AK (2002) Inheritance patterns of maternal alleles in imprinted regions of the mouse genome at different stages of development. Mamm Genome 13:24–29

    Article  PubMed  CAS  Google Scholar 

  38. Pardo-Manuel de Villena F, de la Casa-Esperon E, Briscoe TL, Sapienza C (2000) A genetic test to determine the origin of maternal transmission ratio distortion. Meiotic drive at the mouse Om locus. Genetics 154:333–342

    PubMed  CAS  Google Scholar 

  39. Puschendorf M, Terranova R, Boutsma E, Mao X, Isono K, Brykczynska U, Kolb C, Otte AP, Koseki H, Orkin SH, van Lohuizen M, Peters AH (2008) PRC1 and Suv39h specify parental asymmetry at constitutive heterochromatin in early mouse embryos. Nat Genet 40:411–420

    Article  PubMed  CAS  Google Scholar 

  40. Kitsberg D, Selig S, Brandeis M, Simon I, Keshet I, Driscoll DJ, Nicholls RD, Cedar H (1993) Allele-specific replication timing of imprinted gene regions. Nature 364:459–463

    Article  PubMed  CAS  Google Scholar 

  41. Bean CJ, Schaner CE, Kelly WG (2004) Meiotic pairing and imprinted X chromatin assembly in Caenorhabditis elegans. Nat Genet 36:100–105

    Article  PubMed  CAS  Google Scholar 

  42. Shiu PK, Raju NB, Zickler D, Metzenberg RL (2001) Meiotic silencing by unpaired DNA. Cell 107:905–916

    Article  PubMed  CAS  Google Scholar 

  43. Paigen K, Szatkiewicz JP, Sawyer K, Leahy N, Parvanov ED, Ng SH, Graber JH, Broman KW, Petkov PM (2008) The recombinational anatomy of a mouse chromosome. PLoS Genet 4:e1000119

    Article  PubMed  Google Scholar 

  44. Ng SH, Madeira R, Parvanov ED, Petros LM, Petkov PM, Paigen K (2009) Parental origin of chromosomes influences crossover activity within the Kcnq1 transcriptionally imprinted domain of Mus musculus. BMC Mol Biol 10:43

    Article  PubMed  Google Scholar 

  45. Billings T, Sargent EE, Szatkiewicz JP, Leahy N, Kwak IY, Bektassova N, Walker M, Hassold T, Graber JH, Broman KW, Petkov PM (2010) Patterns of recombination activity on mouse chromosome 11 revealed by high resolution mapping. PLoS One 5:e15340

    Article  PubMed  Google Scholar 

  46. LaSalle JM, Lalande M (1996) Homologous association of oppositely imprinted chromosomal domains. Science 272:725–728

    Article  PubMed  CAS  Google Scholar 

  47. Ling JQ, Li T, Hu JF, Vu TH, Chen HL, Qiu XW, Cherry AM, Hoffman AR (2006) CTCF mediates interchromosomal colocalization between Igf2/H19 and Wsb1/Nf1. Science 312:269–272

    Article  PubMed  CAS  Google Scholar 

  48. Yang J, Corces VG (2011) Chromatin insulators: a role in nuclear organization and gene expression. Adv Cancer Res 110:43–76

    Article  PubMed  CAS  Google Scholar 

  49. Sandhu KS, Shi C, Sjolinder M, Zhao Z, Gondor A, Liu L, Tiwari VK, Guibert S, Emilsson L, Imreh MP, Ohlsson R (2009) Nonallelic transvection of multiple imprinted loci is organized by the H19 imprinting control region during germline development. Genes Dev 23:2598–2603

    Article  PubMed  CAS  Google Scholar 

  50. Terranova R, Yokobayashi S, Stadler MB, Otte AP, van Lohuizen M, Orkin SH, Peters AH (2008) Polycomb group proteins Ezh2 and Rnf2 direct genomic contraction and imprinted repression in early mouse embryos. Dev Cell 15:668–679

    Article  PubMed  CAS  Google Scholar 

  51. Gribnau J, Hochedlinger K, Hata K, Li E, Jaenisch R (2003) Asynchronous replication timing of imprinted loci is independent of DNA methylation, but consistent with differential subnuclear localization. Genes Dev 17:759–773

    Article  PubMed  CAS  Google Scholar 

  52. Kubai DF (1982) Meiosis in Sciara coprophila: structure of the spindle and chromosome behavior during the first meiotic division. J Cell Biol 93:655–669

    Article  PubMed  CAS  Google Scholar 

  53. Mayer, W., Smith, A., Fundele, R., and Haaf, T (2000) Spatial separation of parental genomes in preimplantation mouse embryos. J Cell Biol 148:629–634

    Article  Google Scholar 

  54. Reed KM, Werren JH (1995) Induction of paternal genome loss by the paternal-sex-ratio chromosome and cytoplasmic incompatibility bacteria (Wolbachia): a comparative study of early embryonic events. Mol Reprod Dev 40:408–418

    Article  PubMed  CAS  Google Scholar 

  55. Verhulst EC, Beukeboom LW, van de Zande L (2010) Maternal control of haplodiploid sex determination in the wasp Nasonia. Science 328:620–623

    Article  PubMed  CAS  Google Scholar 

  56. Beukeboom LW, van de Zande L (2010) Genetics of sex determination in the haplodiploid wasp Nasonia vitripennis (Hymenoptera: Chalcidoidea). J Genet 89:333–339

    Article  PubMed  Google Scholar 

  57. Luedi PP, Dietrich FS, Weidman JR, Bosko JM, Jirtle RL, Hartemink AJ (2007) Computational and experimental identification of novel human imprinted genes. Genome Res 17:1723–1730

    Article  PubMed  CAS  Google Scholar 

  58. Babak T, Deveale B, Armour C, Raymond C, Cleary MA, van der Kooy D, Johnson JM, Lim LP (2008) Global survey of genomic imprinting by transcriptome sequencing. Curr Biol 18:1735–1741

    Article  PubMed  CAS  Google Scholar 

  59. Gregg C, Zhang J, Weissbourd B, Luo S, Schroth GP, Haig D, Dulac C (2010) High-resolution analysis of parent-of-origin allelic expression in the mouse brain. Science 329:643–648

    Article  PubMed  CAS  Google Scholar 

  60. Wolff P, Weinhofer I, Seguin J, Roszak P, Beisel C, Donoghue MT, Spillane C, Nordborg M, Rehmsmeier M, Kohler C (2011) High-Resolution Analysis of Parent-of-Origin Allelic Expression in the Arabidopsis Endosperm. PLoS Genet 7:e1002126

    Article  PubMed  CAS  Google Scholar 

  61. Gehring M, Bubb KL, Henikoff S (2009) Extensive demethylation of repetitive elements during seed development underlies gene imprinting. Science 324:1447–1451

    Article  PubMed  CAS  Google Scholar 

  62. Choufani S, Shapiro JS, Susiarjo M, Butcher DT, Grafodatskaya D, Lou Y, Ferreira JC, Pinto D, Scherer SW, Shaffer LG, Coullin P, Caniggia I, Beyene J, Slim R, Bartolomei MS, Weksberg R (2011) A novel approach identifies new differentially methylated regions (DMRs) associated with imprinted genes. Genome Res 21:465–476

    Article  PubMed  CAS  Google Scholar 

  63. Sapienza C, Peterson AC, Rossant J, Balling R (1987) Degree of methylation of transgenes is dependent on gamete of origin. Nature 328:251–254

    Article  PubMed  CAS  Google Scholar 

  64. Wolf JB, Cheverud JM, Roseman C, Hager R (2008) Genome-wide analysis reveals a complex pattern of genomic imprinting in mice. PLoS Genet 4:e1000091

    Article  PubMed  Google Scholar 

  65. Cheverud JM, Lawson HA, Fawcett GL, Wang B, Pletscher LS, R Fox A, Maxwell TJ, Ehrich TH, Kenney-Hunt JP, Wolf JB, Semenkovich CF (2011) Diet-dependent genetic and genomic imprinting effects on obesity in mice. Obesity (Silver Spring) 19:160–170

    Article  Google Scholar 

  66. Nolan CM, Killian JK, Petitte JN, Jirtle RL (2001) Imprint status of M6P/IGF2R and IGF2 in chickens. Dev Genes Evol 211:179–183

    Article  PubMed  CAS  Google Scholar 

  67. Tuiskula-Haavisto M, Vilkki J (2007) Parent-of-origin specific QTL–a possibility towards understanding reciprocal effects in chicken and the origin of imprinting. Cytogenet Genome Res 117:305–312

    Article  PubMed  CAS  Google Scholar 

  68. Dunzinger U, Haaf T, Zechner U (2007) Conserved synteny of mammalian imprinted genes in chicken, frog, and fish genomes. Cytogenet Genome Res 117:78–85

    Article  PubMed  CAS  Google Scholar 

  69. Bongiorni S, Cintio O, Prantera G (1999) The relationship between DNA methylation and chromosome imprinting in the coccid Planococcus citri. Genetics 151:1471–1478

    PubMed  CAS  Google Scholar 

  70. Bongiorni S, Prantera G (2003) Imprinted facultative heterochromatization in mealybugs. Genetica 117:271–279

    Article  PubMed  CAS  Google Scholar 

  71. Goday C, Ruiz MF (2002) Differential acetylation of histones H3 and H4 in paternal and maternal germline chromosomes during development of sciarid flies. J Cell Sci 115:4765–4775

    Article  PubMed  CAS  Google Scholar 

  72. Greciano PG, Goday C (2006) Methylation of histone H3 at Lys4 differs between paternal and maternal chromosomes in Sciara ocellaris germline development. J Cell Sci 119:4667–4677

    Article  PubMed  CAS  Google Scholar 

  73. Joanis V, Lloyd VK (2002) Genomic imprinting in Drosophila is maintained by the products of Suppressor of variegation and trithorax group, but not Polycomb group, genes. Mol Genet Genomics 268:103–112

    Article  PubMed  CAS  Google Scholar 

  74. MacDonald WA, Menon D, Bartlett NJ, Sperry GE, Rasheva V, Meller V, Lloyd VK (2010) The Drosophila homolog of the mammalian imprint regulator. CTCF, maintains the maternal genomic imprint in Drosophila melanogaster. BMC Biol 8:105

    Article  PubMed  Google Scholar 

  75. Feng S, Jacobsen SE, Reik W (2010) Epigenetic reprogramming in plant and animal development. Science 330:622–627

    Article  PubMed  CAS  Google Scholar 

  76. Kota SK, Feil R (2010) Epigenetic transitions in germ cell development and meiosis. Dev Cell 19:675–686

    Article  PubMed  CAS  Google Scholar 

  77. Bongiorni S, Pugnali M, Volpi S, Bizzaro D, Singh PB, Prantera G (2009) Epigenetic marks for chromosome imprinting during spermatogenesis in coccids. Chromosoma 118:501–512

    Article  PubMed  Google Scholar 

  78. Hammoud SS, Nix DA, Zhang H, Purwar J, Carrell DT, Cairns BR (2009) Distinctive chromatin in human sperm packages genes for embryo development. Nature 460:473–478

    PubMed  CAS  Google Scholar 

  79. Burton A, Torres-Padilla ME (2010) Epigenetic reprogramming and development: a unique heterochromatin organization in the preimplantation mouse embryo. Brief Funct Genomics 9:444–454

    Article  PubMed  CAS  Google Scholar 

  80. de la Casa-Esperon E, Roy A (2009) Mammalian gametogenesis to implantation. In: Reproduction and Development Biology, Encyclopedia of Biological, Physiological and Health Sciences, Encyclopedia of Life Support Systems(EOLSS). Eolss Publishers, Oxford,UK

    Google Scholar 

  81. Han Z, Mtango NR, Patel BG, Sapienza C, Latham KE (2008) Hybrid vigor and transgenerational epigenetic effects on early mouse embryo phenotype. Biol Reprod 79:638–648

    Article  PubMed  CAS  Google Scholar 

  82. Arico JK, Katz DJ, van der Vlag J, Kelly WG (2011) Epigenetic Patterns Maintained in Early Caenorhabditis elegans Embryos Can Be Established by Gene Activity in the Parental Germ Cells. PLoS Genet 7:e1001391

    Article  PubMed  CAS  Google Scholar 

  83. Ferreira J, Carmo-Fonseca M (1997) Genome replication in early mouse embryos follows a defined temporal and spatial order. J Cell Sci 110(Pt 7):889–897

    PubMed  CAS  Google Scholar 

  84. May A, Reifenberg K, Zechner U, Haaf T (2008) Asynchronous replication dynamics of imprinted and non-imprinted chromosome regions in early mouse embryos. Exp Cell Res 314:2788–2795

    Article  PubMed  CAS  Google Scholar 

  85. de la Casa-Esperon E, Sapienza C (2003) Natural selection and the evolution of genome imprinting. Annu Rev Genet 37:349–370

    Article  PubMed  Google Scholar 

  86. Engel N, Thorvaldsen JL, Bartolomei MS (2006) CTCF binding sites promote transcription initiation and prevent DNA methylation on the maternal allele at the imprinted H19/Igf2 locus. Hum Mol Genet 15:2945–2954

    Article  PubMed  CAS  Google Scholar 

  87. Renfree MB, Hore TA, Shaw G, Graves JA, Pask AJ (2009) Evolution of genomic imprinting: insights from marsupials and monotremes. Annu Rev Genomics Hum Genet 10:241–262

    Article  PubMed  CAS  Google Scholar 

  88. Scott RJ, Spielman M (2006) Genomic imprinting in plants and mammals: how life history constrains convergence. Cytogenet Genome Res 113:53–67

    Article  PubMed  CAS  Google Scholar 

  89. Tourte Y, Kuligowski-Andres J, Barbier-Ramond C (1980) Different behaviour of paternal and maternal genomes during embryogenesis in the fern, Marsilea (author’s transl). Eur J Cell Biol 21:28–36

    PubMed  CAS  Google Scholar 

  90. Kermicle JL, Alleman M (1990) Gametic imprinting in maize in relation to the angiosperm life cycle. Dev Suppl, 9–14.

    Google Scholar 

  91. Vielle-Calzada JP, Baskar R, Grossniklaus U (2000) Delayed activation of the paternal genome during seed development. Nature 404:91–94

    Article  PubMed  CAS  Google Scholar 

  92. Bergstrom R, Whitehead J, Kurukuti S, Ohlsson R (2007) CTCF regulates asynchronous replication of the imprinted H19/Igf2 domain. Cell Cycle 6:450–454

    Article  PubMed  Google Scholar 

  93. Donohoe ME, Silva SS, Pinter SF, Xu N, Lee JT (2009) The pluripotency factor Oct4 interacts with Ctcf and also controls X-chromosome pairing and counting. Nature 460:128–132

    Article  PubMed  CAS  Google Scholar 

  94. Pardo-Manuel de Villena F, de la Casa-Esperon E, Sapienza C (2000) Natural selection and the function of genome imprinting: beyond the silenced minority. Trends Genet 16:573–579

    Article  PubMed  CAS  Google Scholar 

  95. Paldi A (2003) Genomic imprinting: could the chromatin structure be the driving force? Curr Top Dev Biol 53:115–138

    Article  PubMed  CAS  Google Scholar 

  96. Morison IM, Ramsay JP, Spencer HG (2005) A census of mammalian imprinting. Trends Genet 21:457–465

    Article  PubMed  CAS  Google Scholar 

  97. Barton SC, Surani MA, Norris ML (1984) Role of paternal and maternal genomes in mouse development. Nature 311:374–376

    Article  PubMed  CAS  Google Scholar 

  98. McGrath J, Solter D (1984) Completion of mouse embryogenesis requires both the maternal and paternal genomes. Cell 37:179–183

    Article  PubMed  CAS  Google Scholar 

  99. Surani MA, Barton SC, Norris ML (1984) Development of reconstituted mouse eggs suggests imprinting of the genome during gametogenesis. Nature 308:548–550

    Article  PubMed  CAS  Google Scholar 

  100. Johnston PG, Watson CM, Adams M, Paull DJ (2002) Sex chromosome elimination, X chromosome inactivation and reactivation in the southern brown bandicoot Isoodon obesulus (Marsupialia: Peramelidae). Cytogenet Genome Res 99:119–124

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I apologize to colleagues whose original research papers could not be cited due to space limitations. I would like to thank Elena Becker Barroso and Jose Javier García Ramírez for their helpful comments to this manuscript. I am also grateful to Francisco R. Jiménez Díaz for technical support and to the Consejería de Educación y Ciencia (ref. PPII10-0259-4347) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena de la Casa-Esperón .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

de la Casa-Esperón, E. (2012). Nonmammalian Parent-of-Origin Effects. In: Engel, N. (eds) Genomic Imprinting. Methods in Molecular Biology, vol 925. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-011-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-011-3_19

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-010-6

  • Online ISBN: 978-1-62703-011-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics