Skip to main content

Single-Cell Nanotoxicity Assays of Superparamagnetic Iron Oxide Nanoparticles

  • Protocol
  • First Online:
Nanotoxicity

Part of the book series: Methods in Molecular Biology ((MIMB,volume 926))

Abstract

Properly evaluating the nanotoxicity of nanoparticles involves much more than bulk-cell assays of cell death by necrosis. Cells exposed to nanoparticles may undergo repairable oxidative stress and DNA damage or be induced into apoptosis. Exposure to nanoparticles may cause the cells to alter their proliferation or differentiation or their cell–cell signaling with neighboring cells in a tissue. Nanoparticles are usually more toxic to some cell subpopulations than others, and toxicity often varies with cell cycle. All of these facts dictate that any nanotoxicity assay must be at the single-cell level and must try whenever feasible and reasonable to include many of these other factors.

Focusing on one type of quantitative measure of nanotoxicity, we describe flow and scanning image cytometry approaches to measuring nanotoxicity at the single-cell level by using a commonly used assay for distinguishing between necrotic and apoptotic causes of cell death by one type of nanoparticle. Flow cytometry is fast and quantitative, provided that the cells can be prepared into a single-cell suspension for analysis. But when cells cannot be put into suspension without altering nanotoxicity results, or if morphology, attachment, and stain location are important, a scanning image cytometry approach must be used. Both methods are described with application to a particular type of nanoparticle, a superparamagnetic iron oxide nanoparticle (SPION), as an example of how these assays may be applied to the more general problem of determining the effects of nanomaterial exposure to living cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Haglund E, Seale-Goldsmith M-M, Leary JF (2009) Design of multifunctional nanomedical systems. Ann Biomed Eng 37:2048–2063

    Article  PubMed  CAS  Google Scholar 

  2. Corot C, Robert P, Idee J-M, Port M (2006) Recent advances in iron oxide nanocrystal technology for medical imaging. Adv Drug Deliv Rev 58:1471–1504

    Article  PubMed  CAS  Google Scholar 

  3. Ito A, Kuga Y, Honda H, Kikkawa H, Horiuchi A, Watanabe Y, Kobayashi T (2004) Magnetite nanoparticle-loaded anti-HER2 immunoliposomes for combination of antibody therapy with hyperthermia. Cancer Lett 212:167–175

    Article  PubMed  CAS  Google Scholar 

  4. Kim D, Lee S, Kim K, Kim K, Shim I, Lee M, Lee Y-K (2006) Surface-modified magnetite nanoparticles for hyperthermia: preparation, characterization, and cytotoxicity studies. Curr Appl Phys 6:e242–e246

    Article  Google Scholar 

  5. Kumar CS, Leuschner C, Doomes EE, Henry L, Juban M, Hormes J (2004) Efficacy of lytic peptide-bound magnetite nanoparticles in destroying breast cancer cells. J Nanosci Nanotechnol 4:245–249

    Article  PubMed  CAS  Google Scholar 

  6. Zhang Y, Sun C, Kohler N, Zhang M (2004) Self-assembled coatings on individual monodisperse magnetite nanoparticles for efficient intracellular uptake. Biomed Microdev 6:33–40

    Article  CAS  Google Scholar 

  7. Zhang Y, Yang M, Portney NG, Cui G, Budak E, Ozbay M, Ozkan M, Ozkan CS (2008) Zeta potential: a surface electrical characteristic to probe the interaction of nanoparticles with normal and cancer human breast epithelial cells. Biomed Microdev 10:321–328

    Article  CAS  Google Scholar 

  8. Berry CC, Wells S, Charles S, Aitchison G, Curtis AS (2004) Cell response to dextran-derivatised iron oxide nanoparticles post internalisation. Biomaterials 25:5405–5413

    Article  PubMed  CAS  Google Scholar 

  9. Mondalek FG, Zhang YY, Kropp B, Kopke RD, Ge X, Jackson RL, Dormer KJ (2006) The permability of SPION over an artificial three-layer membrane is enhanced by external magnetic field. J Nanobiotechnol 4:4

    Article  Google Scholar 

  10. Bomati-Miguel O, Morales MP, Tartaj P, Ruiz-Cabello J, Bonville P, Santos M, Zhao X, Veintemillas-Verdaguer S (2005) Fe-based nanoparticulate metallic alloys as contrast agents for magnetic resonance imaging. Biomaterials 26:5695–5703

    Article  PubMed  CAS  Google Scholar 

  11. Moller W, Takenaka S, Buske N, Felten K, Heyder J (2005) Relaxation of ferromagnetic nanoparticles in macrophages: in vitro and in vivo studies. J Magn Magn Mater 293:245–251

    Article  Google Scholar 

  12. Yin H, Too HP, Chow GM (2005) The effects of particle size and surface coating on the cytotoxicity of nickel ferrite. Biomaterials 26:5818–5826

    Article  PubMed  CAS  Google Scholar 

  13. Boutry S, Brunin S, Mahieu I, Laurent S, VanderElst L, Muller RN (2008) Magnetic labeling of non-phagocytic adherent cells with iron oxide nanoparticles: a comprehensive study. Contrast Media Mol Imaging 3:223–232

    Article  PubMed  CAS  Google Scholar 

  14. Geraldes CF, Laurent S (2009) Classification and basic properties of contrast agents for magnetic resonance imaging. Contrast Media Mol Imaging 4:1–23

    Article  PubMed  CAS  Google Scholar 

  15. Kustermann E, Himmelreich U, Kandal K, Geelen T, Ketkar A, Wiedermann D, Strecker C, Esser J, Arnhold S, Hoehn M (2008) Efficient stem cell labeling for MRI studies. Contrast Media Mol Imaging 3:27–37

    Article  PubMed  CAS  Google Scholar 

  16. Oberdorster G, Oberdorster E, Oberdorster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–839

    Article  PubMed  CAS  Google Scholar 

  17. Stone V, Johnston H, Schins RPF (2009) Development of in vitro systems for nanotoxicology: methodological considerations. Crit Rev Toxicol 39:613–626

    Article  PubMed  CAS  Google Scholar 

  18. van Engeland M, Nieland LJ, Ramaekers FC, Schutte B, Reutelingsperger CP (1998) Annexin V-affinity assay: a review on an apoptosis detection system based on phosphatidylserine exposure. Cytometry 31:1–9

    Article  PubMed  Google Scholar 

  19. Waring MJ (1965) Complex formation between ethidium bromide and nucleic acids. J Mol Biol 13:269–282

    Article  PubMed  CAS  Google Scholar 

  20. Koller MR, Palsson BO, Eisfeld TM (2003) Method for inducing a response in one or more targeted cells. US Patent 6,642,018

    Google Scholar 

  21. Palsson BO, Koller MR, Eisfeld TM (2003) Method and apparatus for selectively targeting specific cells within a cell population. US Patent 6,514,722

    Google Scholar 

  22. Palsson BO, Koller MR, Eisfeld TM (2003) Method and apparatus for selectively targeting specific cells within a mixed cell population. US Patent 6,534,308

    Google Scholar 

  23. Clark IB, Hanania EG, Stevens J, Gallina M, Fieck A, Brandes R, Palsson BO, Koller MR (2006) Optoinjection for efficient targeted delivery of a broad range of compounds and macromolecules into diverse cell types. J Biomed Opt 11:014034

    Article  PubMed  Google Scholar 

  24. Hanania EG, Fieck A, Stevens J, Bodzin LJ, Palsson BO, Koller MR (2005) Automated in situ measurement of cell-specific antibody secretion and laser-mediated purification for rapid cloning of highly-secreting producers. Biotechnol Bioeng 91:872–876

    Article  PubMed  CAS  Google Scholar 

  25. Koller MR, Hanania EG, Stevens J, Eisfeld TM, Sasaki GC, Fieck A, Palsson BO (2004) High-throughput laser-mediated in situ cell purification with high purity and yield. Cytometry A 61:153–161

    Article  PubMed  Google Scholar 

  26. Rhodes K, Clark I, Zatcoff M, Eustaquio T, Hoyte KL, Koller MR (2007) Cellular laserfection. Methods Cell Biol 82:309–333

    Article  PubMed  CAS  Google Scholar 

  27. Abraham SD, Knapp DW, Cheng L, Snyder PW, Mittal SK, Bangari DS, Kinch MS, Wu L, Dhariwal J, Mohammed SI (2006) Expression of EphA2 and ephrin A-1 in carcinoma of the urinary bladder. Clin Cancer Res 12:353–360

    Article  PubMed  CAS  Google Scholar 

  28. Seale M-M (2009) Design of targeted nanoparticles for multifunctional nanomedical systems. Ph.D. Thesis, Purdue University, Biomedical Engineering

    Google Scholar 

  29. Arndt-Jovin DJ, Jovin TM (1977) Analysis and sorting of living cells according to deoxyribonucleic acid content. J Histochem Cytochem 25:585–589

    Article  PubMed  CAS  Google Scholar 

  30. Invitrogen (2010, Sept) Alexa Fluor® 488 annexin V/Dead Cell Apoptosis Kit with Alexa® Fluor 488 annexin V and PI for Flow Cytometry. http://probes.invitrogen.com/media/pis/mp13241.pdf, [June 20, 2012]

  31. Gallop PM, Paz MA, Henson E, Latt SA (1984) Dynamic approaches to the delivery of reporter reagents into living cells. Biotechniques 3:32–36

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James F. Leary .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Eustaquio, T., Leary, J.F. (2012). Single-Cell Nanotoxicity Assays of Superparamagnetic Iron Oxide Nanoparticles. In: Reineke, J. (eds) Nanotoxicity. Methods in Molecular Biology, vol 926. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-002-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-002-1_5

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-001-4

  • Online ISBN: 978-1-62703-002-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics