Skip to main content

Live Cell Microscopy of DNA Damage Response in Saccharomyces cerevisiae

  • Protocol
  • First Online:
DNA Repair Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 920))

Abstract

Fluorescence microscopy of the DNA damage response in living cells stands out from many other DNA repair assays by its ability to monitor the response to individual DNA lesions in single cells. This is particularly true in yeast, where the frequency of spontaneous DNA lesions is relatively low compared to organisms with much larger genomes such as mammalian cells. Single cell analysis of individual DNA lesions allows specific events in the DNA damage response to be correlated with cell morphology, cell cycle phase, and other specific characteristics of a particular cell. Moreover, fluorescence live cell imaging allows for multiple cellular markers to be monitored over several hours. This chapter reviews useful fluorescent markers and genotoxic agents for studying the DNA damage response in living cells and provides protocols for live cell imaging, time-lapse microscopy, and for induction of site-specific DNA lesions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shaner NC, Steinbach PA, Tsien RY (2005) A guide to choosing fluorescent proteins. Nat Methods 2:905–909

    Article  PubMed  CAS  Google Scholar 

  2. Remington SJ (2006) Fluorescent proteins: maturation, photochemistry and photophysics. Curr Opin Struct Biol 16:714–721

    Article  PubMed  CAS  Google Scholar 

  3. Ormo M, Cubitt AB, Kallio K, Gross LA, Tsien RY, Remington SJ (1996) Crystal structure of the Aequorea victoria green fluorescent protein. Science 273:1392–1395

    Article  PubMed  CAS  Google Scholar 

  4. Heim R, Tsien RY (1996) Engineering green fluorescent protein for improved brightness, longer wavelengths and fluorescence resonance energy transfer. Curr Biol 6:178–182

    Article  PubMed  CAS  Google Scholar 

  5. Keppler-Ross S, Noffz C, Dean N (2008) A new purple fluorescent color marker for genetic studies in Saccharomyces cerevisiae and Candida albicans. Genetics 179:705–710

    Article  PubMed  CAS  Google Scholar 

  6. Lisby M, Rothstein R, Mortensen UH (2001) Rad52 forms DNA repair and recombination centers during S phase. Proc Natl Acad Sci U S A 98:8276–8282

    Article  PubMed  CAS  Google Scholar 

  7. Alvaro D, Sunjevaric I, Reid RJ, Lisby M, Stillman DJ, Rothstein R (2006) Systematic hybrid LOH: a new method to reduce false positives and negatives during screening of yeast gene deletion libraries. Yeast 23:1097–1106

    Article  PubMed  CAS  Google Scholar 

  8. Torres-Rosell J, Sunjevaric I, De Piccoli G, Sacher M, Eckert-Boulet N, Reid R, Jentsch S, Rothstein R, Aragon L, Lisby M (2007) The Smc5-Smc6 complex and SUMO modification of Rad52 regulates recombinational repair at the ribosomal gene locus. Nat Cell Biol 9:923–931

    Article  PubMed  CAS  Google Scholar 

  9. Andreson BL, Gupta A, Georgieva BP, Rothstein R (2010) The ribonucleotide reductase inhibitor, Sml1, is sequentially phosphorylated, ubiquitylated and degraded in response to DNA damage. Nucleic Acids Res 38:6490–6501

    Article  PubMed  CAS  Google Scholar 

  10. Germann SM, Oestergaard VH, Haas C, Salis P, Motegi A, Lisby M (2011) Dpb11/TopBP1 plays distinct roles in DNA replication, checkpoint response and homologous recombination. DNA Repair (Amst) 10:210–224

    Article  CAS  Google Scholar 

  11. Reid R, Lisby M, Rothstein R (2002) Cloning-free genome alterations in Saccharomyce cerevisiae using adaptamer-mediated PCR. Methods Enzymol 350:258–277

    Article  PubMed  CAS  Google Scholar 

  12. Zhao X, Muller EG, Rothstein R (1998) A suppressor of two essential checkpoint genes identifies a novel protein that negatively affects dNTP pools. Mol Cell 2:329–340

    Article  PubMed  CAS  Google Scholar 

  13. Eckert-Boulet N, Rothstein R, Lisby M (2011) Cell biology of homologous recombination in yeast. Methods Mol Biol 745:523–536

    Article  PubMed  CAS  Google Scholar 

  14. Gordon A, Colman-Lerner A, Chin TE, Benjamin KR, Yu RC, Brent R (2007) Single-cell quantification of molecules and rates using open-source microscope-based cytometry. Nat Methods 4:175–181

    Article  PubMed  CAS  Google Scholar 

  15. Shaner NC, Campbell RE, Steinbach PA, Giepmans BN, Palmer AE, Tsien RY (2004) Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol 22:1567–1572

    Article  PubMed  CAS  Google Scholar 

  16. Lim CR, Kimata Y, Oka M, Nomaguchi K, Kohno K (1995) Thermosensitivity of green fluorescent protein fluorescence utilized to reveal novel nuclear-like compartments in a mutant nucleoporin NSP1. J Biochem (Tokyo) 118:13–17

    CAS  Google Scholar 

  17. Lisby M, Barlow JH, Burgess RC, Rothstein R (2004) Choreography of the DNA damage response; spatiotemporal relationships among checkpoint and repair proteins. Cell 118:699–713

    Article  PubMed  CAS  Google Scholar 

  18. Sherman F, Fink GR, Hicks JB (1986) Methods in yeast genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

    Google Scholar 

  19. Reichard P (1988) Interactions between deoxyribonucleotide and DNA synthesis. Annu Rev Biochem 57:349–374

    Article  PubMed  CAS  Google Scholar 

  20. Lopes M, Cotta-Ramusino C, Pellicioli A, Liberi G, Plevani P, Muzi-Falconi M, Newlon CS, Foiani M (2001) The DNA replication checkpoint response stabilizes stalled replication forks. Nature 412:557–561

    Article  PubMed  CAS  Google Scholar 

  21. Lisby M, Mortensen UH, Rothstein R (2003) Colocalization of multiple DNA double-strand breaks at a single Rad52 repair centre. Nat Cell Biol 5:572–577

    Article  PubMed  CAS  Google Scholar 

  22. Beranek DT, Weis CC, Swenson DH (1980) A comprehensive quantitative analysis of methylated and ethylated DNA using high pressure liquid chromatography. Carcinogenesis 1:595–606

    Article  PubMed  CAS  Google Scholar 

  23. Friedland W, Jacob P, Paretzke HG, Merzagora M, Ottolenghi A (1999) Simulation of DNA fragment distributions after irradiation with photons. Radiat Environ Biophys 38:39–47

    Article  PubMed  CAS  Google Scholar 

  24. Fronza G, Campomenosi P, Iannone R, Abbondandolo A (1992) The 4-nitroquinoline 1-oxide mutational spectrum in single stranded DNA is characterized by guanine to pyrimidine transversions. Nucleic Acids Res 20:1283–1287

    Article  PubMed  CAS  Google Scholar 

  25. Wiltrout ME, Walker GC (2011) The DNA polymerase activity of Saccharomyces cerevisiae Rev1 is biologically significant. Genetics 187:21–35

    Article  PubMed  CAS  Google Scholar 

  26. Deng C, Brown JA, You D, Brown JM (2005) Multiple endonucleases function to repair covalent topoisomerase I complexes in Saccharomyces cerevisiae. Genetics 170:591–600

    Article  PubMed  CAS  Google Scholar 

  27. Eng WK, Faucette L, Johnson RK, Sternglanz R (1988) Evidence that DNA topoisomerase I is necessary for the cytotoxic effects of camptothecin. Mol Pharmacol 34:755–760

    PubMed  CAS  Google Scholar 

  28. Moore CW, McKoy J, Dardalhon M, Davermann D, Martinez M, Averbeck D (2000) DNA damage-inducible and RAD52-independent repair of DNA double-strand breaks in Saccharomyces cerevisiae. Genetics 154:1085–1099

    PubMed  CAS  Google Scholar 

  29. Nielsen I, Bentsen IB, Lisby M, Hansen S, Mundbjerg K, Andersen AH, Bjergbaek L (2009) A Flp-nick system to study repair of a single protein-bound nick in vivo. Nat Methods 6:753–757

    Article  PubMed  CAS  Google Scholar 

  30. McConnell Smith A, Takeuchi R, Pellenz S, Davis L, Maizels N, Monnat RJ Jr, Stoddard BL (2009) Generation of a nicking enzyme that stimulates site-specific gene conversion from the I-AniI LAGLIDADG homing endonuclease. Proc Natl Acad Sci U S A 106:5099–5104

    Article  PubMed  CAS  Google Scholar 

  31. Jensen RE, Herskowitz I (1984) Directionality and regulation of cassette substitution in yeast. Cold Spring Harbor Symp Quant Biol 49:97–104

    Article  PubMed  CAS  Google Scholar 

  32. Gietz D, St Jean A, Woods RA, Schiestl RH (1992) Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res 20:1425

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

We thank Dr. Neta Dean, Stony Brook University, for sharing the yEmRFP construct. This work was supported by Fundação para a Ciência e a Tecnologia (SS), The Danish Agency for Science, Technology and Innovation (ML, NEB), the Villum Kann Rasmussen Foundation (ML), and the European Research Council (ML).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Lisby .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this protocol

Cite this protocol

Silva, S., Gallina, I., Eckert-Boulet, N., Lisby, M. (2012). Live Cell Microscopy of DNA Damage Response in Saccharomyces cerevisiae . In: Bjergbæk, L. (eds) DNA Repair Protocols. Methods in Molecular Biology, vol 920. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-998-3_30

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-998-3_30

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-997-6

  • Online ISBN: 978-1-61779-998-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics