Skip to main content

Using the Multifunctional Xylem Probe for in situ Studies of Plant Water and Ion Relations Under Saline Conditions

  • Protocol
  • First Online:
Plant Salt Tolerance

Part of the book series: Methods in Molecular Biology ((MIMB,volume 913))

Abstract

By insertion into an individual xylem vessel at the root base, the multifunctional xylem probe allows the monitoring of the xylem pressure, the radial electrical gradients in the root (the so-called trans-root potential, TRP), as well as the activity of a particular ion such as K+ in the xylem sap of intact, transpiring plants. The biophysical and physiological significance of these parameters with respect to salt stress is briefly explained, and the assembly of the probe, the setup used for these measurements, and the experimental procedure are outlined in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shabala S, Pang J, Zhou M et al (2009) Electrical signalling and cytokinins mediate effects of light and root cutting on ion uptake in intact plants. Plant Cell Environ 32:194–207

    Article  PubMed  CAS  Google Scholar 

  2. Balling A, Zimmermann U (1990) Comparative measurements of the xylem pressure of Nicotiana plants by means of the pressure bomb and pressure probe. Planta 182:325–338

    Article  Google Scholar 

  3. Zimmermann U, Räde H, Steudle E (1969) Kontinuierliche Druckmessung in Pflanzenzellen Naturwissenschaften 56:634

    Google Scholar 

  4. Zimmermann U (1989) Water relations of plant cells: Pressure probe techniques. Methods Enzymol 174:338–366

    Article  CAS  Google Scholar 

  5. Wegner LH, Zimmermann U (1998) Simultaneous recording of xylem pressure and trans-root potential in roots of intact glycophytes using a novel xylem pressure probe technique. Plant Cell Environ 21:849–865

    Article  Google Scholar 

  6. Felle HH (1993) Ion-selective microelectrodes: their use and importance in modern plant cell biology. Bot Acta 106:5–12

    CAS  Google Scholar 

  7. Wegner LH, Stefano G, Shabala L et al (2011) Sequential depolarization of root cortical and stelar cells induced by an acute salt shock – implications for Na+ and K+ transport into xylem vessels. Plant Cell Environ 34:859–869

    Article  PubMed  CAS  Google Scholar 

  8. Zimmermann U, Schneider H, Thürmer F, Wegner LH (2001) Pressure probe measurements of the driving forces for water transport in intact higher plants: Effects of transpiration and salinity. In: Läuchli A, Lüttge U (eds) Salinity: environment-plants-molecules. Kluwer Academic, Dordrecht

    Google Scholar 

  9. Zimmermann U, Schneider H, Wegner LH, Haase A (2004) Water ascent in tall trees: does evolution of land plants rely on a highly metastable state? New Phytol 162:575–615 (Tansley Review)

    Article  Google Scholar 

  10. Wegner LH, Schneider H, Zimmermann U (2007) On-line measurements of ion relations in the xylem sap of intact plants. In: Sattelmacher B, Horst WJ (eds) The apoplast: compartment of transport, storage and ­reaction. Kluwer Academic, Dordrecht, pp 221–234

    Google Scholar 

  11. Kaufmann I, Schulze-Till T, Schneider HU et al (2009) Functional repair of embolized vessels in maize roots after temporal drought stress, as demonstrated by magnetic resonance imaging. New Phytol 184:245–256

    Article  PubMed  Google Scholar 

  12. Zwieniecki MA, Holbrook NM (2009) Confronting Maxwell’s demon: biophysics of xylem embolism repair. Trends Plant Sci 14:530–534

    Article  PubMed  CAS  Google Scholar 

  13. Schneider H, Wistuba N, Miller B et al (1997) Diurnal variation in the radial reflection coefficient of intact maize roots determined with the xylem pressure probe. J Exp Bot 48:2045–2053

    CAS  Google Scholar 

  14. Milburn JA (1996) Sap ascent in vascular plants: challengers to the cohesion theory ignore the significance of immature xylem and the recycling of Münch water. Ann Bot 78:399–407

    Article  Google Scholar 

  15. Sperry JS, Saliendra NZ, Pockman WT et al (1996) New evidence for large negative xylem pressures and their measurement by the pressure chamber method. Plant Cell Environ 19:427–436

    Article  Google Scholar 

  16. Benkert R, Balling A, Zimmermann U (1991) Direct measurements of the pressure and flow in the xylem vessels of Nicotiana tabacum and their dependence on flow resistance and transpiration rate. Bot Acta 104:405–464

    Google Scholar 

  17. Wei C, Tyree MT, Steudle E (1999) Direct measurement of xylem pressure in leaves of intact maize plants. A test of the Cohesion-Tension theory taking hydraulic architecture into consideration Plant Physiol 121:1191–1205

    CAS  Google Scholar 

  18. Wei C, Steudle E, Tyree MT, Lintilhac PM (2001) The essentials of direct xylem pressure measurement. Plant Cell Environ 24:549–555

    Article  Google Scholar 

  19. Schneider H, Wegner LH, Haase A, Zimmermann U (2007) Long-distance water transport under controlled transpirational conditions: minimal-invasive investigations by means of pressure probes and NMR imaging. In: Sattelmacher B, Horst WJ (eds) The apoplast: compartment of transport, storage and reaction. Kluwer Academic, Dordrecht

    Google Scholar 

  20. Zhu JJ, Zimmermann U, Thürmer F, Haase A (1995) Xylem pressure response in maize roots subjected to osmotic stress: determination of radial reflection coefficients by use of the xylem pressure probe. Plant Cell Environ 18:906–912

    Article  Google Scholar 

  21. Schneider H, Zhu JJ, Zimmermann U (1997) Xylem and cell turgor pressure probe measurements in intact roots of glycophytes: transpiration induces a change in the radial and cellular reflection coefficients. Plant Cell Environ 20:221–229

    Article  Google Scholar 

  22. Bai XF, Zhu JJ, Zhang P et al (2007) Na+ and water uptake in relation to the radial reflection coefficient of root in arrow leaf saltbush under salt stress. J Int Plant Biol 49:1334–1340

    Article  CAS  Google Scholar 

  23. Tang A-C, Boyer JS (2008) Xylem tension affects growth-induced water potential and daily elongation of maize leaves. J Exp Bot 59:753–764

    Article  PubMed  CAS  Google Scholar 

  24. Steudle E (2001) The cohesion-tension mechanism and the acquisition of water by plant roots. Ann Rev Plant Physiol Plant Mol Biol 52:847–875

    Article  CAS  Google Scholar 

  25. Steudle E, Peterson CA (1998) How does water get through roots? J Exp Bot 49: 775–788

    CAS  Google Scholar 

  26. Bramley H, Turner NC, Turner DW, Tyerman SD (2007) Comparison between gradient-dependent hydraulic conductivities of roots using the root pressure probe: the role of pressure propagations and implications for the relative roles of parallel radial pathways. Plant Cell Environ 30:861–874

    Article  PubMed  Google Scholar 

  27. Knipfer T, Fricke W (2010) Root pressure and a solute reflection coefficient close to unity exclude a purely apoplastic pathway of radial water transport in barley. New Phytol 187(1): 159–170

    Article  PubMed  Google Scholar 

  28. Shabala S, Cuin TA (2008) Potassium transport and plant salt tolerance. Physiol Plant 133:651–669

    Article  PubMed  CAS  Google Scholar 

  29. Dunlop J (1982) Membrane potentials in the xylem in roots of intact plants. J Exp Bot 33:910–918

    Article  Google Scholar 

  30. Anderson WP, Higinbotham N (1975) A cautionary note on plant root electrophysiology. J Exp Bot 26:533–535

    Article  Google Scholar 

  31. Shabala S, Shabala L, Cuin TA et al (2010) Xylem ionic relations and salinity tolerance in barley. Plant J 61:839–853

    Article  PubMed  CAS  Google Scholar 

  32. Dunlop J, Bowling DJF (1971) The movement of ions to the xylem exudate of maize roots. III The location of the electrical and electrochemical potential differences between the exudate and the medium J Exp Bot 22:453–464

    CAS  Google Scholar 

  33. Okamoto H, Ichinao K, Katou K (1978) Radial electrogenic activity in the stem of Vigna sesquipedalis: involvement of spatially separate pumps. Plant Cell Environ 1:279–284

    Article  Google Scholar 

  34. De Boer AH, Prins HBA, Zanstra PE (1983) Biphasic composition of trans-root electrical potential in roots of Plantago species: involvement of spatially separated electrogenic pumps. Planta 157:259–266

    Article  Google Scholar 

  35. De Boer AH (1989) Xylem transport. Methods Enzymol 174:277–287

    Article  Google Scholar 

  36. Wegner LH, Zimmermann U (2002) On-line measurements of K+ activity in the tensile water of the xylem conduit of higher plants. Plant J 32:409–417

    Article  PubMed  CAS  Google Scholar 

  37. Wegner LH, Sattelmacher B, Läuchli A, Zimmermann U (1999) Trans-root potential, xylem pressure, and root cortical membrane potential of ‘low-salt’ maize plants as influenced by nitrate and ammonium. Plant Cell Environ 22:1549–1558

    Article  CAS  Google Scholar 

  38. Hua JM, Wang XL, Zhai FQ, Yan F, Feng K (2008) Effects of NaCl and Ca2+ on membrane potential of epidermal cells of maize roots. Agricult Sci China 7:291–296

    Article  CAS  Google Scholar 

  39. Schurr U (1998) Xylem sap sampling - new approaches to an old topic. Trends Plant Sci 3:293–298

    Article  Google Scholar 

  40. Wegner LH, Zimmermann U (2004) Bicarbonate-induce alkalinization of the xylem sap in intact maize seedlings as measured in situ with a novel xylem pH probe. Plant Physiol 136:3469–3477

    Article  PubMed  CAS  Google Scholar 

  41. Shabala S, Demidchik V, Shabala L et al (2006) Extracellular Ca2+ ameliorates NaCl-induced K+ loss from Arabidopsis root and leaf cells by controlling plasma membrane K+-permeable channels. Plant Physiol 141:1653–1665

    Article  PubMed  CAS  Google Scholar 

  42. Wegner LH, Zimmermann U (2009) Hydraulic conductance and K+ transport into the xylem depend on radial volume flow, rather than on xylem pressure, in roots of intact, transpiring maize seedlings. New Phytol 181:361–373

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars H. Wegner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Wegner, L.H. (2012). Using the Multifunctional Xylem Probe for in situ Studies of Plant Water and Ion Relations Under Saline Conditions. In: Shabala, S., Cuin, T. (eds) Plant Salt Tolerance. Methods in Molecular Biology, vol 913. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-986-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-986-0_3

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-985-3

  • Online ISBN: 978-1-61779-986-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics