Skip to main content

Functional Purification of Human and Mouse Mammary Stem Cells

  • Protocol
  • First Online:
Progenitor Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 916))

Abstract

Normal and tumor stem cells are present in rare quantities in tissues and this has historically represented a major hurdle to in-depth investigations of their biology. In the case of the mammary gland, the relative promiscuity of the immunophenotypical markers described in several studies for the isolation of human and mouse mammary stem cells limits their usefulness, in particular when highly purified mammary stem cell fractions are required for an in-depth molecular and functional characterization (Stingl et al. Nature 439:993–997, 2006; Shackleton et al. Nature 439:84–88, 2006; Liao et al. Cancer Res 67:8131–8138, 2007; Eirew et al. Nat Med 14:1384–1389, 2008; Raouf et al. Cell Stem Cell 3:109–118, 2008; Lim et al. Nat Med 15:907–913, 2009). In fact, most so-called stem cell markers are not selectively expressed by mammary stem cells, but are instead also expressed by terminally differentiated luminal and/or myoepithelial cells or by bipotent progenitors within the mammary gland (Stingl et al. Nature 439:993–997, 2006; Eirew et al. Nat Med 14:1384–1389, 2008; Raouf et al. Cell Stem Cell 3:109–118, 2008; Stingl et al. Differentiation 63:201–213, 1998; Jones et al. Cancer Res 64:3037–3045, 2004). Here, we describe a new methodology that does not require the use of immunophenotypical markers to obtain highly pure populations of mammary stem cells. This approach exploits two functional properties of mammary stem cells: (1) their quiescent or slowly proliferative phenotype, as compared to their progeny; and (2) their ability to survive and proliferate in anchorage-independent conditions, giving rise to clonal spheroids, commonly known as “mammospheres” (Dontu et al. Genes Dev 17:1253–1270, 2003; Pece et al. Cell 140:62–73, 2010; Cicalese et al. Cell 138:1083–1095, 2009). In the context of mammospheres, stem cells, which perform one or two rounds of division and then reenter quiescence, are identified based on their ability to retain a lipophilic fluorescent dye, PKH26, that is by contrast progressively lost by dilution in the actively proliferating progeny of precursors (Pece et al. Cell 140:62–73, 2010; Cicalese et al. Cell 138:1083–1095, 2009). Following mammosphere dissociation, the differential degree of PKH26 epifluorescence displayed by stem cells compared to precursor cells is exploited for their purification by FACS sorting. As a result, the scarcely represented PKH26-labeled mammary stem cells are purified to near homogeneity and can be used for further molecular and biological studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pece S, Tosoni D, Confalonieri S, Mazzarol G, Vecchi M, Ronzoni S, Bernard L, Viale G, Pelicci PG, Di Fiore PP (2010) Biological and molecular heterogeneity of breast cancers correlates with their cancer stem cell content. Cell 140:62–73

    Article  PubMed  CAS  Google Scholar 

  2. Cicalese A, Bonizzi G, Pasi CE, Faretta M, Ronzoni S, Giulini B, Brisken C, Minucci S, Di Fiore PP, Pelicci PG (2009) The tumor suppressor p53 regulates polarity of self-renewing divisions in mammary stem cells. Cell 138:1083–1095

    Article  PubMed  CAS  Google Scholar 

  3. Lanzkron SM, Collector MI, Sharkis SJ (1999) Hematopoietic stem cell tracking in vivo: a comparison of short-term and long-term repopulating cells. Blood 93:1916–1921

    PubMed  CAS  Google Scholar 

  4. Huang S, Law P, Francis K, Palsson BO, Ho AD (1999) Symmetry of initial cell divisions among primitive hematopoietic progenitors is independent of ontogenic age and regulatory molecules. Blood 94:2595–2604

    PubMed  CAS  Google Scholar 

  5. Dontu G, Abdallah WM, Foley JM, Jackson KW, Clarke MF, Kawamura MJ, Wicha MS (2003) In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev 17:1253–1270

    Article  PubMed  CAS  Google Scholar 

  6. Pece S, Serresi M, Santolini E, Capra M, Hulleman E, Galimberti V, Zurrida S, Maisonneuve P, Viale G, Di Fiore PP (2004) Loss of negative regulation by Numb over Notch is relevant to human breast carcinogenesis. J Cell Biol 167:215–221

    Article  PubMed  CAS  Google Scholar 

  7. Westhoff B, Colaluca IN, D’Ario G, Donzelli M, Tosoni D, Volorio S, Pelosi G, Spaggiari L, Mazzarol G, Viale G, Pece S, Di Fiore PP (2009) Alterations of the Notch pathway in lung cancer. Proc Natl Acad Sci USA 106:22293–22298

    Article  PubMed  CAS  Google Scholar 

  8. Eirew P, Stingl J, Raouf A, Turashvili G, Aparicio S, Emerman JT, Eaves CJ (2008) A method for quantifying normal human mammary epithelial stem cells with in vivo regenerative ability. Nat Med 14:1384–1389

    Article  PubMed  CAS  Google Scholar 

  9. Ginestier C, Hur MH, Charafe-Jauffret E, Monville F, Dutcher J, Brown M, Jacquemier J, Viens P, Kleer CG, Liu S, Schott A, Hayes D, Birnbaum D, Wicha MS, Dontu G (2007) ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 1:555–567

    Article  PubMed  CAS  Google Scholar 

  10. Raouf A, Zhao Y, To K, Stingl J, Delaney A, Barbara M, Iscove N, Jones S, McKinney S, Emerman J, Aparicio S, Marra M, Eaves C (2008) Transcriptome analysis of the normal human mammary cell commitment and differentiation process. Cell Stem Cell 3:109–118

    Article  PubMed  CAS  Google Scholar 

  11. Stingl J, Eirew P, Ricketson I, Shackleton M, Vaillant F, Choi D, Li HI, Eaves CJ (2006) Purification and unique properties of mammary epithelial stem cells. Nature 439:993–997

    PubMed  CAS  Google Scholar 

  12. Shackleton M, Vaillant F, Simpson KJ, Stingl J, Smyth GK, Asselin-Labat ML, Wu L, Lindeman GJ, Visvader JE (2006) Generation of a functional mammary gland from a single stem cell. Nature 439:84–88

    Article  PubMed  CAS  Google Scholar 

  13. Liao MJ, Zhang CC, Zhou B, Zimonjic DB, Mani SA, Kaba M, Gifford A, Reinhardt F, Popescu NC, Guo W, Eaton EN, Lodish HF, Weinberg RA (2007) Enrichment of a population of mammary gland cells that form mammospheres and have in vivo repopulating activity. Cancer Res 67:8131–8138

    Article  PubMed  CAS  Google Scholar 

  14. Lim E, Vaillant F, Wu D, Forrest NC, Pal B, Hart AH, Asselin-Labat ML, Gyorki DE, Ward T, Partanen A, Feleppa F, Huschtscha LI, Thorne HJ, Fox SB, Yan M, French JD, Brown MA, Smyth GK, Visvader JE, Lindeman GJ (2009) Aberrant luminal progenitors as the candidate target population for basal tumor development in BRCA1 mutation carriers. Nat Med 15:907–913

    Article  PubMed  CAS  Google Scholar 

  15. Stingl J, Eaves CJ, Kuusk U, Emerman JT (1998) Phenotypic and functional characterization in vitro of a multipotent epithelial cell present in the normal adult human breast. Differentiation 63:201–213

    Article  PubMed  CAS  Google Scholar 

  16. Jones C, Mackay A, Grigoriadis A, Cossu A, Reis-Filho JS, Fulford L, Dexter T, Davies S, Bulmer K, Ford E, Parry S, Budroni M, Palmieri G, Neville AM, O’Hare MJ, Lakhani SR (2004) Expression profiling of purified normal human luminal and myoepithelial breast cells: identification of novel prognostic markers for breast cancer. Cancer Res 64:3037–3045

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank all members of the laboratory, past and present, especially Drs. Daniele Galvagno, Silvia Zecchini, and Simona Ronzoni for contributing to the development of the protocols and procedures described in this chapter. Also, we thank Dr. Pascale Romano for critical comments on the manuscript. Our research is supported by grants from the Associazione Italiana per la Ricerca sul Cancro (AIRC); the Italian Ministry of Education-University-Research (MIUR); the Italian Ministry of Health; the European Community (FP6 and FP7); the CARIPLO foundation; the Ferrari Foundation; the Monzino Foundation; the G. Vollaro Foundation; the European Research Council (ERC).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pier Paolo Di Fiore or Salvatore Pece .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this protocol

Cite this protocol

Tosoni, D., Di Fiore, P.P., Pece, S. (2012). Functional Purification of Human and Mouse Mammary Stem Cells. In: Mace, K., Braun, K. (eds) Progenitor Cells. Methods in Molecular Biology, vol 916. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-980-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-980-8_6

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-979-2

  • Online ISBN: 978-1-61779-980-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics