Skip to main content

Production of Antibody Fragments in Escherichia coli

  • Protocol
  • First Online:
Antibody Engineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 907))

Abstract

Escherichia coli is a host widely used in the industrial production of recombinant proteins. However, the expression of heterologous proteins in E. coli often encounters the formation of inclusion bodies, which are insoluble and nonfunctional protein aggregates. For the successful production of antibody fragments, which includes single-chain variable fragments (scFvs), we describe here the modification of linker, signal, and Shine–Dalgarno (SD) sequences, the coexpression of cytoplasmic and periplasmic chaperones, and a method for fed-batch cultivation with exponential feed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Levy R, Weiss R, Chen G, Iverson BL, Georgiou G (2001) Production of correctly folded Fab antibody fragment in the cytoplasm of Escherichia coli trxB gor mutants via the coexpression of molecular chaperones. Protein Expr Purif 23:338–347

    Article  CAS  PubMed  Google Scholar 

  2. Cao P, Zhang S, Gong Z, Tang X, Cao M, Hu Y (2006) Development of a compact anti-BAFF antibody in Escherichia coli. Appl Microbiol Biotechnol 73:151–157

    Article  CAS  PubMed  Google Scholar 

  3. Heo MA, Kim SH, Kim SY, Kim YJ, Chung J, Oh MK, Lee SG (2006) Functional expression of single-chain variable fragment antibody against c-Met in the cytoplasm of Escherichia coli. Protein Expr Purif 47:203–209

    Article  CAS  PubMed  Google Scholar 

  4. Missiakas D, Raina S (1997) Protein folding in the bacterial periplasm. J Bacteriol 179:2465–2471

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Bessette PH, Aslund F, Beckwith J, Georgiou G (1997) Efficient folding of proteins with multiple disulfide bonds in the Escherichia coli cytoplasm. Proc Natl Acad Sci U S A 96:13703–13708

    Article  Google Scholar 

  6. Jurado P, Ritz D, Beckwith J, de Lorenzo V, Fernández LA (2002) Production of functional single-chain Fv antibodies in the cytoplasm of Escherichia coli. J Mol Biol 320:1–10

    Article  CAS  PubMed  Google Scholar 

  7. Venturi M, Seifert C, Hunte C (2002) High level production of functional antibody Fab fragments in an oxidizing bacterial cytoplasm. J Mol Biol 315:1–8

    Article  CAS  PubMed  Google Scholar 

  8. Sonoda H, Kumada Y, Katsuda T, Yamaji H (2010) Functional expression of single-chain Fv antibody in the cytoplasm of Escherichia coli by thioredoxin fusion and co-expression of molecular chaperones. Protein Expr Purif 70:248–253

    Article  CAS  PubMed  Google Scholar 

  9. Kortt AA, Malby RL, Caldwell JB, Gruen LC, Ivancic NM, Lawrence MC, Howlett GJ, Webster RG, Hudson PJ, Calman PM (1994) Recombinant antineuraminidase single chain Fv antibody: characterization, formation of dimer and higher molecular mass multimers and solution of the crystal structure of the scFv-neuraminidase complex. Eur J Biochem 221:151–157

    Article  CAS  PubMed  Google Scholar 

  10. Plückthun A, Pack P (1997) New protein engineering approaches to multivalent and bi-specific antibody fragments. Immunotechnology 3:83–105

    Article  PubMed  Google Scholar 

  11. Kortt AA, Lah M, Oddie GW, Gruen LC, Burn JE, Pearce LA, Atwell JL, McCoy AJ, Howlett GJ, Metzger DW, Webster RG, Hudson PJ (1997) Single chain Fv fragments of anti-neuraminidase antibody NC10 containing five and ten residue linkers form dimers and with zero residue linker a trimer. Protein Eng 10:423–428

    Article  CAS  PubMed  Google Scholar 

  12. Atwell J, Breheney KA, Lawrence LJ, McCoy AJ, Kortt AA, Hudson PJ (1999) scFv multimers of the anti-neuraminidase antibody NC10: length of the linker between VH and VL domains dictates precisely the transition between diabodies and triabodies. Protein Eng 12:597–604

    Article  CAS  PubMed  Google Scholar 

  13. Kumada Y, Kawasaki T, Kikuchi Y, Katoh S (2007) Polypeptide links suitable for the efficient production of dimeric scFv in Escherichia coli. Biochem Eng J 35:158–165

    Article  CAS  Google Scholar 

  14. Kumada Y, Sakan Y, Kajihara H, Kihara M, Kikuchi K, Yamaji H, Seong GH, Katoh S (2009) Efficient production of single-chain Fv antibody possessing rare codon linkers in fed-batch fermentation. J Biosci Bioeng 107:73–77

    Article  CAS  PubMed  Google Scholar 

  15. Purvis IJ, Bettany AJE, Santiago TC, Coggins JR, Duncan K, Eason R, Brown AJP (1987) The efficiency of folding of some proteins is increased by controlled rates of translation in vivo. A hypothesis. J Mol Biol 193:413–417

    Article  CAS  PubMed  Google Scholar 

  16. Kihara M, Nogami T, Sano T, Katsuda T, Yamaji H (2009) Effects of Shine-Dalgarno sequence on the production of single-chain Fv antibody by Escherichia coli. Young Asian Biochemical Engineers’ Community Symposium 2009, Xiamen, China

    Google Scholar 

  17. Choi JH, Lee SY (2004) Secretory and extracellular production of recombinant proteins using Escherichia coli. Appl Microbiol Biotechnol 64:625–635

    Article  CAS  PubMed  Google Scholar 

  18. Nogami T, Fukumaru Y, Katsuda T, Yamaji, H (2010) Effect of signal peptide on the production of single-chain Fv antibody by Escherichia coli. Young Asian Biochemical Engineers’ Community Symposium 2010, Taipei, Taiwan

    Google Scholar 

  19. Pérez-Pérez J, Martínez-Caja C, Barbero JL, Gutiérrez J (1995) DnaK/DnaJ supplementation improves the periplasmic production of human granulocyte-colony stimulating factor in Escherichia coli. Biochem Biophys Res Commun 210:524–529

    Article  PubMed  Google Scholar 

  20. Hu X, O’Hara L, White S, Magner E, Kane M, Wall JG (2007) Optimisation of production of a domoic acid-binding scFv antibody fragment in Escherichia coli using molecular chaperones and functional immobilisation on a mesoporous silicate support. Protein Expr Purif 52:194–201

    Article  CAS  PubMed  Google Scholar 

  21. Hayhurst A, Harris WJ (1999) Escherichia coli skp chaperone coexpression improves solubility and phage display of single-chain antibody fragments. Protein Expr Purif 15:336–343

    Article  CAS  PubMed  Google Scholar 

  22. Bothmann H, Pluckthun A (2000) The periplasmic Escherichia coli peptidylprolyl cis, trans-isomerase FkpA. Increased functional expression of antibody fragments with and without cis-prolines. J Biol Chem 275:17100–17105

    Article  CAS  PubMed  Google Scholar 

  23. Hayhurst A, Happe S, Mabry R, Koch Z, Iverson BL, Georgiou G (2003) Isolation and expression of recombinant antibody fragments to the biological warfare pathogen Brucella melitensis. J Immunol Methods 276:185–196

    Article  CAS  PubMed  Google Scholar 

  24. Zhang Z, Song LP, Fang M, Wang F, He D, Zhao R, Liu J, Zhou ZY, Yin CC, Lin Q, Huang HL (2003) Production of soluble and functional engineered antibodies in Escherichia coli improved by FkpA. Biotechniques 35:1032–1038

    CAS  PubMed  Google Scholar 

  25. Padiolleau-Lefèvre S, Débat H, Phichith D, Thomas D, Friboulet A, Avalle B (2006) Expression of a functional scFv fragment of an anti-idiotypic antibody with a beta-lactam hydrolytic activity. Immunol Lett 103:39–44

    Article  PubMed  Google Scholar 

  26. Ow DS, Lim DY, Nissom PM, Camattari A, Wong VV (2010) Co-expression of Skp and FkpA chaperones improves cell viability and alters the global expression of stress response genes during scFvD1.3 production. Microb Cell Fact 9:22

    Article  PubMed Central  PubMed  Google Scholar 

  27. Katakura Y, Kobayashi E, Kurokawa Y, Omasa T, Fujiyama K, Suga K (1996) Cloning of cDNA and characterization of anti-RNase a monoclonal antibody 3A21. J Ferment Bioeng 82:312–314

    Article  CAS  Google Scholar 

  28. Sonoda H, Kumada Y, Katsuda T, Yamaji H (2011) Effects of cytoplasmic and periplasmic chaperones on secretory production of single-chain Fv antibody in Escherichia coli. J Biosci Bioeng 111:465–470

    Article  CAS  PubMed  Google Scholar 

  29. Korz DJ, Rinas U, Hellmuth K, Sanders EA, Deckwer W-D (1995) Simple fed-batch technique for high cell density cultivation of Escherichia coli. J Biotechnol 39:59–65

    Article  CAS  PubMed  Google Scholar 

  30. Nishi K, Takai M, Morimune K, Ohkawa H (2003) Molecular and immunochemical characteristics of monoclonal and recombinant antibodies specific to bisphenol A. Biosci Biotechnol Biochem 67:1358–1367

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomohisa Katsuda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Katsuda, T., Sonoda, H., Kumada, Y., Yamaji, H. (2012). Production of Antibody Fragments in Escherichia coli . In: Chames, P. (eds) Antibody Engineering. Methods in Molecular Biology, vol 907. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-974-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-974-7_18

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-973-0

  • Online ISBN: 978-1-61779-974-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics