Skip to main content

Embryo Culture and Epigenetics

  • Protocol
  • First Online:
Embryo Culture

Part of the book series: Methods in Molecular Biology ((MIMB,volume 912))

Abstract

During preimplantation development, major epigenetic reprogramming occurs, erasing gametic modifications, and establishing embryonic epigenetic modifications. Given the plasticity of these modifications, they are susceptible to disruption by assisted reproductive technologies, including embryo culture. The current state of evidence is presented for the effects of embryo culture on global DNA methylation and histone modifications, retroviral silencing, X-inactivation, and genomic imprinting. Several salient points emerge from the literature; that culture in the absence of other procedures can lead to epigenetic perturbations; that all media are suboptimal; and that embryo response to in vitro culture is stochastic. We propose that embryos adapt to the suboptimal environment generated by embryo culture, including epigenetic adaptations, and that “quiet” embryos may be the least epigenetically compromised by in vitro culture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Jaenisch R, Bird A (2003) Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 33(Suppl):245–254

    Article  PubMed  CAS  Google Scholar 

  2. Rivera RM (2010) Epigenetic aspects of fertilization and preimplantation development in mammals: lessons from the mouse. Syst Biol Reprod Med 56:388–404

    Article  PubMed  CAS  Google Scholar 

  3. Morgan HD, Santos F, Green K, Dean W, Reik W (2005) Epigenetic reprogramming in mammals. Hum Mol Genet 14(Spec No 1): R47–R58

    Google Scholar 

  4. Campos EI, Reinberg D (2009) Histones: annotating chromatin. Annu Rev Genet 43:559–599

    Article  PubMed  CAS  Google Scholar 

  5. Bannister AJ, Kouzarides T (2011) Regulation of chromatin by histone modifications. Cell Res 21:381–395

    Google Scholar 

  6. Shi L, Wu J (2009) Epigenetic regulation in mammalian preimplantation embryo development. Reprod Biol Endocrinol 7:59–68

    Article  PubMed  Google Scholar 

  7. Schultz RM (2002) The molecular foundations of the maternal to zygotic transition in the preimplantation embryo. Hum Reprod Update 8:323–331

    Article  PubMed  CAS  Google Scholar 

  8. Torres-Padilla ME, Bannister AJ, Hurd PJ, Kouzarides T, Zernicka-Goetz M (2006) Dynamic distribution of the replacement histone variant H3.3 in the mouse oocyte and preimplantation embryos. Int J Dev Biol 50:455–461

    Article  PubMed  CAS  Google Scholar 

  9. Ahmad K, Henikoff S (2002) The histone variant H3.3 marks active chromatin by replication-independent nucleosome assembly. Mol Cell 9:1191–1200

    Article  PubMed  CAS  Google Scholar 

  10. Schuettengruber B, Chourrout D, Vervoort M, Leblanc B, Cavalli G (2007) Genome regulation by polycomb and trithorax proteins. Cell 128:735–745

    Article  PubMed  CAS  Google Scholar 

  11. Puschendorf M et al (2008) PRC1 and Suv39h specify parental asymmetry at constitutive heterochromatin in early mouse embryos. Nat Genet 40:411–420

    Article  PubMed  CAS  Google Scholar 

  12. Hajkova P et al (2002) Epigenetic reprogramming in mouse primordial germ cells. Mech Dev 117:15–23

    Article  PubMed  CAS  Google Scholar 

  13. Kageyama S, Liu H, Kaneko N, Ooga M, Nagata M, Aoki F (2007) Alterations in epigenetic modifications during oocyte growth in mice. Reproduction 133:85–94

    Article  PubMed  CAS  Google Scholar 

  14. Kurihara Y et al (2008) Maintenance of genomic methylation patterns during preimplantation development requires the somatic form of DNA methyltransferase 1. Dev Biol 313:335–346

    Article  PubMed  CAS  Google Scholar 

  15. Cardoso MC, Leonhardt H (1999) DNA methyltransferase is actively retained in the cytoplasm during early development. J Cell Biol 147:25–32

    Article  PubMed  CAS  Google Scholar 

  16. Doherty AS, Bartolomei MS, Schultz RM (2002) Regulation of stage-specific nuclear translocation of Dnmt1o during preimplantation mouse development. Dev Biol 242:255–266

    Article  PubMed  CAS  Google Scholar 

  17. Cirio MC et al (2008) Preimplantation expression of the somatic form of Dnmt1 suggests a role in the inheritance of genomic imprints. BMC Dev Biol 8:9

    Article  PubMed  Google Scholar 

  18. Mandal PK, Kazazian HH Jr (2008) SnapShot: vertebrate transposons. Cell 135(192–192):e191

    Google Scholar 

  19. Kigami D, Minami N, Takayama H, Imai H (2003) MuERV-L is one of the earliest transcribed genes in mouse one-cell embryos. Biol Reprod 68:651–654

    Article  PubMed  CAS  Google Scholar 

  20. Svoboda P et al (2004) RNAi and expression of retrotransposons MuERV-L and IAP in preimplantation mouse embryos. Dev Biol 269:276–285

    Article  PubMed  CAS  Google Scholar 

  21. Kim SH et al (2004) Differential DNA methylation reprogramming of various repetitive sequences in mouse preimplantation embryos. Biochem Biophys Res Commun 324:58–63

    Article  PubMed  CAS  Google Scholar 

  22. Lane N et al (2003) Resistance of IAPs to methylation reprogramming may provide a mechanism for epigenetic inheritance in the mouse. Genesis 35:88–93

    Article  PubMed  CAS  Google Scholar 

  23. Gaudet F et al (2004) Dnmt1 expression in pre- and postimplantation embryogenesis and the maintenance of IAP silencing. Mol Cell Biol 24:1640–1648

    Article  PubMed  CAS  Google Scholar 

  24. Duhl DM, Vrieling H, Miller KA, Wolff GL, Barsh GS (1994) Neomorphic agouti mutations in obese yellow mice. Nat Genet 8:59–65

    Article  PubMed  CAS  Google Scholar 

  25. Waterland RA, Jirtle RL (2003) Transposable elements: targets for early nutritional effects on epigenetic gene regulation. Mol Cell Biol 23:5293–5300

    Article  PubMed  CAS  Google Scholar 

  26. Morgan HD, Sutherland HGE, Martin DIK, Whitelaw E (1999) Epigenetic inheritance at the agouti locus in the mouse. Nat Genet 23:314–318

    Article  PubMed  CAS  Google Scholar 

  27. Miltenberger RJ, Mynatt RL, Wilkinson JE, Woychik RP (1997) The role of the agouti gene in the yellow obese syndrome. J Nutr 127:1902S–1907S

    PubMed  CAS  Google Scholar 

  28. Dolinoy DC, Huang D, Jirtle RL (2007) Maternal nutrient supplementation counteracts bisphenol A-induced DNA hypomethylation in early development. Proc Natl Acad Sci USA 104:13056–13061

    Article  PubMed  CAS  Google Scholar 

  29. Dolinoy DC, Weidman JR, Waterland RA, Jirtle RL (2006) Maternal genistein alters coat color and protects Avy mouse offspring from obesity by modifying the fetal epigenome. Environ Health Perspect 114:567–572

    Article  PubMed  CAS  Google Scholar 

  30. Zeng L et al (1997) The mouse fused locus encodes Axin, an inhibitor of the Wnt signaling pathway that regulates embryonic axis formation. Cell 90:181–192

    Article  PubMed  CAS  Google Scholar 

  31. Rakyan VK et al (2003) Transgenerational inheritance of epigenetic states at the murine Axin(Fu) allele occurs after maternal and paternal transmission. Proc Natl Acad Sci USA 100:2538–2543

    Article  PubMed  CAS  Google Scholar 

  32. Waterland RA et al (2006) Maternal methyl supplements increase offspring DNA methylation at Axin fused. Genesis 44:401–406

    Article  PubMed  CAS  Google Scholar 

  33. Verona RI, Mann MRW, Bartolomei MS (2003) Genomic imprinting: intricacies of epigenetic regulation in clusters. Annu Rev Cell Dev Biol 19:237–259

    Article  PubMed  CAS  Google Scholar 

  34. Thorvaldsen JL, Verona RI, Bartolomei MS (2006) X-tra! X-tra! News from the mouse X chromosome. Dev Biol 298:344–353

    Article  PubMed  CAS  Google Scholar 

  35. Erhardt S et al (2003) Consequences of the depletion of zygotic and embryonic enhancer of zeste 2 during preimplantation mouse development. Development 130:4235–4248

    Article  PubMed  CAS  Google Scholar 

  36. Okamoto I, Otte AP, Allis CD, Reinberg D, Heard E (2004) Epigenetic dynamics of imprinted X inactivation during early mouse development. Science 303:644–649

    Article  PubMed  CAS  Google Scholar 

  37. Mak W et al (2004) Reactivation of the paternal X chromosome in early mouse embryos. Science 303:666–669

    Article  PubMed  CAS  Google Scholar 

  38. Zuccotti M et al (2002) Mouse Xist expression begins at zygotic genome activation and is timed by a zygotic clock. Mol Reprod Dev 61:14–20

    Article  PubMed  CAS  Google Scholar 

  39. Howell CY et al (2001) Genomic imprinting disrupted by a maternal effect mutation in the Dnmt1 gene. Cell 104:829–838

    Article  PubMed  CAS  Google Scholar 

  40. Hirasawa R, Chiba H, Kaneda M, et al (2008) Maternal and zygotic Dnmt1 are necessary and sufficient for the maintenance of DNA methylation imprints during preimplantation development. Genes Dev 22:1607–1616

    Google Scholar 

  41. Kim JM, Ogura A (2009) Changes in allele-specific association of histone modifications at the imprinting control regions during mouse preimplantation development. Genesis 47:611–616

    Article  PubMed  CAS  Google Scholar 

  42. Van Buggenhout G, Fryns JP (2009) Angelman syndrome (AS, MIM 105830). Eur J Hum Genet 17:1367–1373

    Article  PubMed  Google Scholar 

  43. Weksberg R, Shuman C, Beckwith JB (2010) Beckwith–Wiedemann syndrome. Eur J Hum Genet 18:8–14

    Article  PubMed  Google Scholar 

  44. Shi W, Haaf T (2002) Aberrant methylation patterns at the two-cell stage as an indicator of early developmental failure. Mol Reprod Dev 63:329–334

    Article  PubMed  CAS  Google Scholar 

  45. Zaitseva I, Zaitsev S, Alenina N, Bader M, Krivokharchenko A (2007) Dynamics of DNA-demethylation in early mouse and rat embryos developed in vivo and in vitro. Mol Reprod Dev 74:1255–1261

    Article  PubMed  CAS  Google Scholar 

  46. Katari S et al (2009) DNA methylation and gene expression differences in children conceived in vitro or in vivo. Hum Mol Genet 18:3769–3778

    Google Scholar 

  47. Huang JC et al (2007) Comparison of histone modifications in in vivo and in vitro fertilization mouse embryos. Biochem Biophys Res Commun 354:77–83

    Article  PubMed  CAS  Google Scholar 

  48. Morgan HD, Jin XL, Li A, Whitelaw E, O’Neill C (2008) The culture of zygotes to the blastocyst stage changes the postnatal expression of an epigentically labile allele, agouti viable yellow, in mice. Biol Reprod 79:618–623

    Article  PubMed  CAS  Google Scholar 

  49. Fernandez-Gonzalez R, Ramirez MA, Pericuesta E, Calle A, Gutierrez-Adan A (2010) Histone modifications at the blastocyst Axin1(Fu) locus mark the heritability of in vitro culture-induced epigenetic alterations in mice. Biol Reprod 83:720–727

    Article  PubMed  CAS  Google Scholar 

  50. Wrenzycki C et al (2002) In vitro production and nuclear transfer affect dosage compensation of the X-linked gene transcripts G6PD, PGK, and Xist in preimplantation bovine embryos. Biol Reprod 66:127–134

    Article  PubMed  CAS  Google Scholar 

  51. Nino-Soto MI, Basrur PK, King WA (2007) Impact of in vitro production techniques on the expression of X-linked genes in bovine (Bos taurus) oocytes and pre-attachment embryos. Mol Reprod Dev 74:144–153

    Article  PubMed  CAS  Google Scholar 

  52. Mann MR et al (2004) Selective loss of imprinting in the placenta following preimplantation development in culture. Development 131:3727–3735

    Article  PubMed  CAS  Google Scholar 

  53. Sasaki H, Ferguson-Smith AC, Shum ASW, Barton SC, Surani MA (1995) Temporal and spatial regulation of H19 imprinting in normal and uniparental mouse embryos. Development 121:4195–4202

    PubMed  CAS  Google Scholar 

  54. Doherty AS, Mann MRW, Tremblay KD, Bartolomei MS, Schultz RM (2000) Differential effects of culture on imprinted H19 expression in the preimplantation mouse embryo. Biol Reprod 62:1526–1535

    Article  PubMed  CAS  Google Scholar 

  55. Khosla S, Dean W, Brown D, Reik W, Feil R (2001) Culture of preimplantation mouse embryos affects fetal development and the expression of imprinted genes. Biol Reprod 64:918–926

    Article  PubMed  CAS  Google Scholar 

  56. Li T et al (2005) IVF results in de novo DNA methylation and histone methylation at an Igf2-H19 imprinting epigenetic switch. Mol Hum Reprod 11:631–640

    Article  PubMed  CAS  Google Scholar 

  57. Fauque P et al (2007) Assisted reproductive technology affects developmental kinetics, H19 imprinting control region methylation and H19 gene expression in individual mouse embryos. BMC Dev Biol 7:116

    Article  PubMed  Google Scholar 

  58. Market-Velker BA, Fernandes AD, Mann MR (2010) Side-by-side comparison of five commercial media systems in a mouse model: suboptimal in vitro culture interferes with imprint maintenance. Biol Reprod 83:938–950

    Article  PubMed  CAS  Google Scholar 

  59. Rivera RM et al (2008) Manipulations of mouse embryos prior to implantation result in aberrant expression of imprinted genes on day 9.5 of development. Hum Mol Genet 17:1–14

    Article  PubMed  CAS  Google Scholar 

  60. Cox GF et al (2002) Intracytoplasmic sperm injection may increase the risk of imprinting defects. Am J Hum Genet 71:162–164

    Article  PubMed  CAS  Google Scholar 

  61. DeBaun MR, Niemitz EL, Feinberg AP (2003) Association of in vitro fertilization with Beckwith–Wiedemann syndrome and epigenetic alterations of LIT1 and H19. Am J Hum Genet 72:156–160

    Article  PubMed  CAS  Google Scholar 

  62. Gicquel C et al (2003) In vitro fertilization may increase the risk of Beckwith–Wiedemann syndrome related to the abnormal imprinting of the KCN1OT gene. Am J Hum Genet 72:1338–1341

    Article  PubMed  CAS  Google Scholar 

  63. Maher ER et al (2003) Beckwith–Wiedemann syndrome and assisted reproduction technology (ART). J Med Genet 40:62–64

    Article  PubMed  CAS  Google Scholar 

  64. Orstavik KH et al (2003) Another case of imprinting defect in a girl with Angelman syndrome who was conceived by intracytoplasmic semen injection. Am J Hum Genet 72:218–219

    Article  PubMed  CAS  Google Scholar 

  65. Ludwig M et al (2005) Increased prevalence of imprinting defects in patients with Angelman syndrome born to subfertile couples. J Med Genet 42:289–291

    Article  PubMed  CAS  Google Scholar 

  66. Rossignol S et al (2006) The epigenetic imprinting defect of patients with Beckwith–Wiedemann syndrome born after assisted reproductive technology is not restricted to the 11p15 region. J Med Genet 43:902–907

    Article  PubMed  CAS  Google Scholar 

  67. Halliday J, Oke K, Breheny S, Algar E, Amor D (2004) Beckwith–Wiedemann syndrome and IVF: a case–control study. Am J Hum Genet 75:526–528

    Article  PubMed  CAS  Google Scholar 

  68. Sutcliffe AG et al (2006) Assisted reproductive therapies and imprinting disorders – a preliminary British survey. Hum Reprod 21:1009–1011

    Article  PubMed  CAS  Google Scholar 

  69. Chang AS, Moley KH, Wangler M, Feinberg AP, Debaun MR (2005) Association between Beckwith–Wiedemann syndrome and assisted reproductive technology: a case series of 19 patients. Fertil Steril 83:349–354

    Article  PubMed  Google Scholar 

  70. Behboodi E et al (1995) Birth of large calves that developed from in vitro-derived bovine embryos. Theriogenology 44:227–232

    Article  PubMed  CAS  Google Scholar 

  71. Young LE, Sinclair KD, Wilmut I (1998) Large offspring syndrome in cattle and sheep. Rev Reprod 3:155–163

    Article  PubMed  CAS  Google Scholar 

  72. Hori N et al (2010) Aberrant CpG methylation of the imprinting control region KvDMR1 detected in assisted reproductive technology-produced calves and pathogenesis of large offspring syndrome. Anim Reprod Sci 122:303–312

    Article  PubMed  CAS  Google Scholar 

  73. Young LE et al (2001) Epigenetic change in IGF2R is associated with fetal overgrowth after sheep embryo culture. Nat Genet 27:153–154

    Article  PubMed  CAS  Google Scholar 

  74. Suzuki J Jr et al (2009) In vitro culture and somatic cell nuclear transfer affect imprinting of SNRPN gene in pre- and post-implantation stages of development in cattle. BMC Dev Biol 9:9

    Article  PubMed  Google Scholar 

  75. Lim D et al (2009) Clinical and molecular genetic features of Beckwith–Wiedemann syndrome associated with assisted reproductive technologies. Hum Reprod 24:741–747

    Article  PubMed  Google Scholar 

  76. Ho Y, Wigglesworth K, Eppig JJ, Schultz RM (1995) Preimplantation development of mouse embryos in KSOM: augmentation by amino acids and analysis of gene expression. Mol Reprod Dev 41:232–238

    Article  PubMed  CAS  Google Scholar 

  77. Gardner DK et al (1998) A prospective randomized trial of blastocyst culture and transfer in in-vitro fertilization. Hum Reprod 13:3434–3440

    Article  PubMed  CAS  Google Scholar 

  78. Biggers JD, Summers MC (2008) Choosing a culture medium: making informed choices. Fertil Steril 90:473–483

    Article  PubMed  Google Scholar 

  79. Rinaudo P, Schultz RM (2004) Effects of embryo culture on global pattern of gene expression in preimplantation mouse embryos. Reproduction 128:301–311

    Article  PubMed  CAS  Google Scholar 

  80. Tveden-Nyborg PY et al (2008) Analysis of the expression of putatively imprinted genes in bovine peri-implantation embryos. Theriogenology 70:1119–1128

    Article  PubMed  CAS  Google Scholar 

  81. Chen SL, Shi XY, Zheng HY, Wu FR, Luo C (2010) Aberrant DNA methylation of imprinted H19 gene in human preimplantation embryos. Fertil Steril 94:2356–2358

    Article  PubMed  CAS  Google Scholar 

  82. Bavister BD (1995) Culture of preimplantation embryos: facts and artifacts. Hum Reprod Update 1:91–148

    Article  PubMed  CAS  Google Scholar 

  83. Gardner DK (1994) Mammalian embryo culture in the absence of serum or somatic cell support. Cell Biol Int 18:1163–1179

    Article  PubMed  CAS  Google Scholar 

  84. Fernandez-Gonzalez R et al (2004) Long-term effect of in vitro culture of mouse embryos with serum on mRNA expression of imprinting genes, development, and behavior. Proc Natl Acad Sci USA 101:5880–5885

    Article  PubMed  CAS  Google Scholar 

  85. Walker SK, Hartwich KM, Seamark RF (1996) The production of unusually large offspring following embryo manipulation: concepts and challenges. Theriogenology 45:111–120

    Article  Google Scholar 

  86. Thompson JG, Gardner DK, Pugh PA, McMillan WH, Tervit HR (1995) Lamb birth weight is affected by culture system utilized during in vitro pre-elongation development of ovine embryos. Biol Reprod 53:1385–1391

    Article  PubMed  CAS  Google Scholar 

  87. Fischer B, Bavister BD (1993) Oxygen tension in the oviduct and uterus of rhesus monkeys, hamsters and rabbits. J Reprod Fertil 99:673–679

    Article  PubMed  CAS  Google Scholar 

  88. Mastroianni L Jr, Jones R (1965) Oxygen tension within the rabbit fallopian tube. J Reprod Fertil 9:99–102

    Article  PubMed  Google Scholar 

  89. Dumoulin JC et al (1999) Effect of oxygen concentration on human in-vitro fertilization and embryo culture. Hum Reprod 14:465–469

    Article  PubMed  CAS  Google Scholar 

  90. Li J, Foote RH (1993) Culture of rabbit zygotes into blastocysts in protein-free medium with one to twenty per cent oxygen. J Reprod Fertil 98:163–167

    Article  PubMed  CAS  Google Scholar 

  91. Orsi NM, Leese HJ (2001) Protection against reactive oxygen species during mouse preimplantation embryo development: role of EDTA, oxygen tension, catalase, superoxide dismutase and pyruvate. Mol Reprod Dev 59:44–53

    Article  PubMed  CAS  Google Scholar 

  92. Pabon JE Jr, Findley WE, Gibbons WE (1989) The toxic effect of short exposures to the atmospheric oxygen concentration on early mouse embryonic development. Fertil Steril 51:896–900

    PubMed  Google Scholar 

  93. Quinn P, Harlow GM (1978) The effect of oxygen on the development of preimplantation mouse embryos in vitro. J Exp Zool 206:73–80

    Article  PubMed  CAS  Google Scholar 

  94. Thompson JG, Simpson AC, Pugh PA, Donnelly PE, Tervit HR (1990) Effect of oxygen concentration on in-vitro development of preimplantation sheep and cattle embryos. J Reprod Fertil 89:573–578

    Article  PubMed  CAS  Google Scholar 

  95. Rinaudo PF, Giritharan G, Talbi S, Dobson AT, Schultz RM (2006) Effects of oxygen tension on gene expression in preimplantation mouse embryos. Fertil Steril 86:1252–1265

    Article  PubMed  CAS  Google Scholar 

  96. Feil D et al (2006) Effect of culturing mouse embryos under different oxygen concentrations on subsequent fetal and placental development. J Physiol 572:87–96

    PubMed  CAS  Google Scholar 

  97. Market-Velker BA, Zhang L, Magri LS, Bonvissuto AC, Mann MRDual (2010) Effects of superovulation: loss of maternal and paternal imprinted methylation in a dose-dependent manner. Hum Mol Genet 19:36–51

    Article  PubMed  CAS  Google Scholar 

  98. Santos F et al (2010) Evaluation of epigenetic marks in human embryos derived from IVF and ICSI. Hum Reprod 25:2387–2395

    Article  PubMed  CAS  Google Scholar 

  99. Turan N et al (2010) Inter- and intra-individual variation in allele-specific DNA methylation and gene expression in children conceived using assisted reproductive technology. PLoS Genet 6:e1001033

    Article  PubMed  Google Scholar 

  100. Market Velker BA, Denomme MM, Mann MR (2012) Loss of genomic imprinting in mouse embryos with fast rates of preimplantation development in culture. Biol Reprod 10;86(5):143

    Article  PubMed  Google Scholar 

  101. Baumann CG, Morris DG, Sreenan JM, Leese HJ (2007) The quiet embryo hypothesis: molecular characteristics favoring viability. Mol Reprod Dev 74:1345–1353

    Article  PubMed  CAS  Google Scholar 

  102. Leese HJ (2002) Quiet please, do not disturb: a hypothesis of embryo metabolism and viability. Bioessays 24:845–849

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mellissa R. W. Mann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this protocol

Cite this protocol

Velker, B.A.M., Denomme, M.M., Mann, M.R.W. (2012). Embryo Culture and Epigenetics. In: Smith, G., Swain, J., Pool, T. (eds) Embryo Culture. Methods in Molecular Biology, vol 912. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-971-6_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-971-6_23

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-970-9

  • Online ISBN: 978-1-61779-971-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics