Skip to main content

Cell Perturbation Screens for Target Identification by RNAi

  • Protocol
  • First Online:
Bioinformatics and Drug Discovery

Part of the book series: Methods in Molecular Biology ((MIMB,volume 910))

Abstract

Over the last decade, cell-based screening has become a powerful method in target identification and plays an important role both in basic research and drug discovery. The availability of whole genome sequences and improvements in cell-based screening techniques opened new avenues for high-throughput experiments. Large libraries of RNA interference reagents available for many organisms allow the dissection of broad spectrum of cellular processes. Here, we describe the current state of the large-scale phenotype screening with a focus on cell-based screens. We underline the importance and provide details of screen design, scalability, performance, data analysis, and hit prioritization. Similar to classical high-throughput in vitro screens with defined-target approaches in the past, cell-based screens depend on a successful establishment of robust phenotypic assays, the ability to quantitatively measure phenotypic changes and bioinformatics methods for data analysis, integration, and interpretation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. An WF, Tolliday N (2010) Cell-based assays for high-throughput screening. Mol Biotechnol 45:180–186

    Article  PubMed  CAS  Google Scholar 

  2. Wignall SM, Gray NS, Chang YT, Juarez L, Jacob R, Burlingame A, Schultz PG, Heald R (2004) Identification of a novel protein regulating microtubule stability through a chemical approach. Chem Biol 11:135–146

    PubMed  CAS  Google Scholar 

  3. Bartscherer K, Pelte N, Ingelfinger D, Boutros M (2006) Secretion of Wnt ligands requires Evi, a conserved transmembrane protein. Cell 125:523–533

    Article  PubMed  CAS  Google Scholar 

  4. Jacob LS, Wu X, Dodge ME, Fan CW, Kulak O, Chen B, Tang W, Wang B, Amatruda JF, Lum L (2011) Genome-wide RNAi screen reveals disease-associated genes that are common to Hedgehog and Wnt signaling. Sci Signal 4:ra4

    Article  PubMed  Google Scholar 

  5. Gilbert DF, Erdmann G, Zhang X, Fritzsche A, Demir K, Jaedicke A, Muehlenberg K, Wanker EE, Boutros M (2011) A novel multiplex cell viability assay for high-throughput RNAi screening. PLoS One 6:e28338

    Article  PubMed  CAS  Google Scholar 

  6. Ketteler R, Sun Z, Kovacs KF, He WW, Seed B (2008) A pathway sensor for genome-wide screens of intracellular proteolytic cleavage. Genome Biol 9:R64

    Article  PubMed  Google Scholar 

  7. Badr CE, Wurdinger T, Tannous BA (2011) Functional drug screening assay reveals potential glioma therapeutics. Assay and Drug Development Technologies 9:281–289

    Article  Google Scholar 

  8. Beck V, Pfitscher A, Jungbauer A (2005) GFP-reporter for a high throughput assay to monitor estrogenic compounds. J Biochem Biophys Methods 64:19–37

    Article  PubMed  CAS  Google Scholar 

  9. Zanella F, Rosado A, Garcia B, Carnero A, Link W (2009) Using multiplexed regulation of luciferase activity and GFP translocation to screen for FOXO modulators. BMC Cell Biol 10:14

    Article  PubMed  Google Scholar 

  10. Giuliano KA, Johnston PA, Gough A, Taylor DL (2006) Systems cell biology based on high-content screening. Methods Enzymol 414:601–619

    Google Scholar 

  11. Korn K, Krausz E (2007) Cell-based high-content screening of small-molecule libraries. Curr Opin Chem Biol 11:503–510

    Article  PubMed  CAS  Google Scholar 

  12. Lundholt BK, Linde V, Loechel F, Pedersen HC, Moller S, Praestegaard M, Mikkelsen I, Scudder K, Bjorn SP, Heide M, Arkhammar PO, Terry R, Nielsen SJ (2005) Identification of Akt pathway inhibitors using redistribution screening on the FLIPR and the IN Cell 3000 analyzer. J Biomol Screen 10:20–29

    Article  PubMed  CAS  Google Scholar 

  13. Neumann B, Walter T, Heriche JK, Bulkescher J, Erfle H, Conrad C, Rogers P, Poser I, Held M, Liebel U, Cetin C, Sieckmann F, Pau G, Kabbe R, Wunsche A, Satagopam V, Schmitz MH, Chapuis C, Gerlich DW, Schneider R, Eils R, Huber W, Peters JM, Hyman AA, Durbin R, Pepperkok R, Ellenberg J (2010) Phenotypic profiling of the human genome by time-lapse microscopy reveals cell division genes. Nature 464:721–727

    Article  PubMed  CAS  Google Scholar 

  14. Pardo-Martin C, Chang TY, Koo BK, Gilleland CL, Wasserman SC, Yanik MF (2010) High-throughput in vivo vertebrate screening. Nat Methods 7:634–636

    Article  PubMed  CAS  Google Scholar 

  15. Mayr LM, Bojanic D (2009) Novel trends in high-throughput screening. Curr Opin Pharmacol 9:580–588

    Article  PubMed  CAS  Google Scholar 

  16. Boutros M, Ahringer J (2008) The art and design of genetic screens: RNA interference. Nat Rev Genet 9:554–566

    Article  PubMed  CAS  Google Scholar 

  17. Falschlehner C, Steinbrink S, Erdmann G, Boutros M (2010) High-throughput RNAi screening to dissect cellular pathways: a how-to guide. Biotechnol J 5:368–376

    Article  PubMed  CAS  Google Scholar 

  18. Mohr S, Bakal C, Perrimon N (2010) Genomic screening with RNAi: results and challenges. Annu Rev Biochem 79:37–64

    Article  PubMed  CAS  Google Scholar 

  19. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811

    Article  PubMed  CAS  Google Scholar 

  20. Tabara H, Grishok A, Mello CC (1998) RNAi in C. elegans: soaking in the genome sequence. Science 282:430–431

    Article  PubMed  CAS  Google Scholar 

  21. Timmons L, Fire A (1998) Specific interference by ingested dsRNA. Nature 395:854

    Article  PubMed  CAS  Google Scholar 

  22. Clemens JC, Worby CA, Simonson-Leff N, Muda M, Maehama T, Hemmings BA, Dixon JE (2000) Use of double-stranded RNA interference in Drosophila cell lines to dissect signal transduction pathways. Proc Natl Acad Sci USA97:6499–6503

    Article  PubMed  CAS  Google Scholar 

  23. Reynolds A, Anderson EM, Vermeulen A, Fedorov Y, Robinson K, Leake D, Karpilow J, Marshall WS, Khvorova A (2006) Induction of the interferon response by siRNA is cell type- and duplex length-dependent. RNA 12:988–993

    Article  PubMed  CAS  Google Scholar 

  24. Mittal V (2004) Improving the efficiency of RNA interference in mammals. Nat Rev Genet 5:355–365

    Article  PubMed  CAS  Google Scholar 

  25. Fraser AG, Kamath RS, Zipperlen P, Martinez-Campos M, Sohrmann M, Ahringer J (2000) Functional genomic analysis of C. elegans chromosome I by systematic RNA interference. Nature 408:325–330

    Article  PubMed  CAS  Google Scholar 

  26. Kamath RS, Fraser AG, Dong Y, Poulin G, Durbin R, Gotta M, Kanapin A, Le Bot N, Moreno S, Sohrmann M, Welchman DP, Zipperlen P, Ahringer J (2003) Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 421:231–237

    Article  PubMed  CAS  Google Scholar 

  27. Malo N, Hanley JA, Cerquozzi S, Pelletier J, Nadon R (2006) Statistical practice in high-throughput screening data analysis. Nat Biotechnol 24:167–175

    Article  PubMed  CAS  Google Scholar 

  28. Zhang JH, Chung TD, Oldenburg KR (1999) A simple statistical parameter for use in evaluation and validation of high throughput screening assays. J Biomol Screen 4:67–73

    Article  PubMed  Google Scholar 

  29. Brideau C, Gunter B, Pikounis B, Liaw A (2003) Improved statistical methods for hit selection in high-throughput screening. J Biomol Screen 8:634–647

    Article  PubMed  Google Scholar 

  30. Boutros M, Brás LP, Huber W (2006) Analysis of cell-based RNAi screens. Genome Biol 7:R66

    Article  PubMed  Google Scholar 

  31. Bras L, Pau G, Hahne F, Boutros M, Huber W (2012) Analysis of cell-based screens—cellHTS2. Reference Manual. Bioconductor Release 2.9

    Google Scholar 

  32. Pelz O, Gilsdorf M, Boutros M (2010) web cellHTS2: a web-application for the analysis of high-throughput screening data. BMC Bioinform 11:185

    Article  Google Scholar 

  33. Perlman ZE, Slack MD, Feng Y, Mitchison TJ, Wu LF, Altschuler SJ (2004) Multidimensional drug profiling by automated microscopy. Science 306:1194–1198

    Article  PubMed  CAS  Google Scholar 

  34. Kiger AA, Baum B, Jones S, Jones MR, Coulson A, Echeverri C, Perrimon N (2003) A functional genomic analysis of cell morphology using RNA interference. J Biol 2:27

    Article  PubMed  CAS  Google Scholar 

  35. Eggert US, Kiger AA, Richter C, Perlman ZE, Perrimon N, Mitchison TJ, Field CM (2004) Parallel chemical genetic and genome-wide RNAi screens identify cytokinesis inhibitors and targets. PLoS Biol 2:e379

    Article  PubMed  Google Scholar 

  36. Shariff A, Kangas J, Coelho LP, Quinn S, Murphy RF (2010) Automated image analysis for high-content screening and analysis. J Biomol Screen 15:726–734

    Article  PubMed  Google Scholar 

  37. Carpenter AE, Jones TR, Lamprecht MR, Clarke C, Kang IH, Friman O, Guertin DA, Chang JH, Lindquist RA, Moffat J, Golland P, Sabatini DM (2006) Cell profiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol 7:R100

    Article  PubMed  Google Scholar 

  38. Abramoff MD, Magelhaes PJ, Ram S (2004) Image processing with ImageJ. Biophotonics Int 11:36–42

    Google Scholar 

  39. Pau G, Fuchs F, Sklyar O, Boutros M, Huber W (2010) EBImage—an R package for image processing with applications to cellular phenotypes. Bioinformatics 26:979–981

    Article  PubMed  CAS  Google Scholar 

  40. Bakal C, Aach J, Church G, Perrimon N (2007) Quantitative morphological signatures define local signaling networks regulating cell morphology. Science 316:1753–1756

    Article  PubMed  CAS  Google Scholar 

  41. Gunsalus KC, Yueh WC, MacMenamin P, Piano F (2004) RNAiDB and PhenoBlast: web tools for genome-wide phenotypic mapping projects. Nucleic Acids Res 32:D406–410

    Article  PubMed  CAS  Google Scholar 

  42. Perez-Iratxeta C, Bork P, Andrade MA (2002) Association of genes to genetically inherited diseases using data mining. Nat Genet 31:316–319

    PubMed  CAS  Google Scholar 

  43. Morrison JL, Breitling R, Higham DJ, Gilbert DR (2005) GeneRank: using search engine technology for the analysis of microarray experiments. BMC Bioinform 6:233

    Article  Google Scholar 

  44. Ma X, Lee H, Wang L, Sun F (2007) CGI: a new approach for prioritizing genes by combining gene expression and protein-protein interaction data. Bioinformatics 23:215–221

    Article  PubMed  CAS  Google Scholar 

  45. Tranchevent LC, Capdevila FB, Nitsch D, De Moor B, De Causmaecker P, Moreau Y (2011) A guide to web tools to prioritize candidate genes. Brief Bioinform 12:22–32

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Julia Gross and Thomas Sandmann for critical comments on the manuscript. This work has been in part supported by NGFN-Plus NeuroNet.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Boutros .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this protocol

Cite this protocol

Demir, K., Boutros, M. (2012). Cell Perturbation Screens for Target Identification by RNAi. In: Larson, R. (eds) Bioinformatics and Drug Discovery. Methods in Molecular Biology, vol 910. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-965-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-965-5_1

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-964-8

  • Online ISBN: 978-1-61779-965-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics