Skip to main content

Lignin-Degrading Enzyme Activities

  • Protocol
  • First Online:
Biomass Conversion

Part of the book series: Methods in Molecular Biology ((MIMB,volume 908))

Abstract

Over the past three decades, the activities of four kinds of enzyme have been purported to furnish the mechanistic foundations for macromolecular lignin depolymerization in decaying plant cell walls. The pertinent fungal enzymes comprise lignin peroxidase (with a relatively high redox potential), manganese peroxidase, an alkyl aryl etherase, and laccase. The peroxidases and laccase, but not the etherase, are expressed extracellularly by white-rot fungi. A number of these microorganisms exhibit a marked preference toward lignin in their degradation of lignocellulose. Interestingly, some white-rot fungi secrete both kinds of peroxidase but no laccase, while others that are equally effective express extracellular laccase activity but no peroxidases. Actually, none of these enzymes has been reported to possess significant depolymerase activity toward macromolecular lignin substrates that are derived with little chemical modification from the native biopolymer. Here, the assays commonly employed for monitoring the traditional fungal peroxidases, alkyl aryl etherase, and laccase are described in their respective contexts. A soluble native polymeric substrate that can be isolated directly from a conventional milled-wood lignin preparation is characterized in relation to its utility in next-generation lignin-depolymerase assays.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wong DWS (2009) Structure and action mechanism of ligninolytic enzymes. Appl Biochem Biotechnol 157:174–209

    Article  CAS  Google Scholar 

  2. Davin LB, Patten AM, Jourdes M, Lewis NG (2008) Lignins: a twenty-first century challenge. In: Himmel ME (ed) Biomass recalcitrance—deconstructing the plant cell wall for bioenergy. Blackwell, Oxford, pp 213–305

    Google Scholar 

  3. Rencoret J, Gutiérrez A, Nieto L, Jiménez-Barbero J, Faulds CB, Kim H, Ralph J, Martínez ÁT, del Río JC (2011) Lignin composition and structure in young versus adult Eucalyptus globulus plants. Plant Physiol 155:667–682

    Article  CAS  Google Scholar 

  4. Lawoko M, Henriksson G, Gellerstedt G (2005) Structural differences between the lignin–carbohydrate complexes present in wood and chemical pulps. Biomacromolecules 6:3467–3473

    Article  CAS  Google Scholar 

  5. Balakshin MY, Capanema EA, Chang H-M (2007) MWL fraction with a high concentration of lignin–carbohydrate linkages: isolation and 2D NMR spectroscopic analysis. Holzforschung 61:1–7

    Article  CAS  Google Scholar 

  6. Gellerstedt G (2007) Lignin complexity: fundamental and applied issues. http://rfparois.free.fr/LIG2G/Seminaire%20LIG2G-WEB-vs-tout-public.htm.

  7. Tien M, Kirk TK (1983) Lignin-degrading enzyme from the hymenomycete Phanerochaete chrysosporium Burds. Science 221:661–663

    Article  CAS  Google Scholar 

  8. Kern HW, Haider K, Pool W, de Leeuw JW, Ernst L (1989) Comparison of the action of Phanerochaete chrysosporium and its extracellular enzymes (lignin peroxidases) on lignin preparations. Holzforschung 43:375–384

    Article  CAS  Google Scholar 

  9. Haemmerli SD, Leisola MSA, Fiechter A (1986) Polymerization of lignins by ligninases from Phanerochaete chrysosporium. FEMS Microbiol Lett 35:33–36

    Article  CAS  Google Scholar 

  10. Lundell T, Schoemaker H, Hatakka A, Brunow G (1993) New mechanism of the Cα–Cβ cleavage in non-phenolic arylglycerol β-aryl ether lignin substructures catalyzed by lignin peroxidase. Holzforschung 47:219–224

    Article  CAS  Google Scholar 

  11. Hammel KE, Jensen KA Jr, Mozuch MD, Landucci LL, Tien M, Pease EA (1993) Ligninolysis by a purified lignin peroxidase. J Biol Chem 268:12274–12281

    CAS  Google Scholar 

  12. Hall PL (1980) Enzymatic transformations of lignin: 2. Enzyme Microb Technol 2:170–176

    Article  CAS  Google Scholar 

  13. Forney LJ, Reddy CA, Tien M, Aust SD (1982) The involvement of hydroxyl radical derived from hydrogen peroxide in lignin degradation by the white rot fungus Phanerochaete chrysosporium. J Biol Chem 257:11455–11462

    CAS  Google Scholar 

  14. Gold MH, Kutsuki H, Morgan MA (1983) Oxidative degradation of lignin by photochemical and chemical radical generating systems. Photochem Photobiol 38:647–651

    Article  CAS  Google Scholar 

  15. Glenn JK, Gold MH (1985) Purification and characterization of an extracellular Mn(II)-dependent peroxidase from the lignin-degrading basidiomycete, Phanerochaete chrysosporium. Arch Biochem Biophys 242:329–341

    Article  CAS  Google Scholar 

  16. Mester T, Field JA (1998) Characterization of a novel manganese peroxidase–lignin peroxidase hybrid isozyme produced by Bjerkandera species strain BOS55 in the absence of manganese. J Biol Chem 273:15412–15417

    Article  CAS  Google Scholar 

  17. Bourbonnais R, Paice MG (1990) Oxidation of non-phenolic substrates—an expanded role for laccase in biodegradation. FEBS Lett 267:99–102

    Article  CAS  Google Scholar 

  18. Nutsubidze NN, Sarkanen S, Schmidt EL, Shashikanth S (1998) Consecutive polymerization and depolymerization of kraft lignin by Trametes cingulata. Phytochemistry 49:1203–1212

    Article  CAS  Google Scholar 

  19. Li K, Horanyi PS, Collins R, Phillips RS, Eriksson K-E (2001) Investigation of the role of 3-hydroxyanthranilic acid in the degradation of lignin by white-rot fungus Pycnoporus cinnabarinus. Enzyme Microb Technol 28:301–307

    Article  CAS  Google Scholar 

  20. Hammel KE, Kapich AN, Jensen KA Jr, Ryan ZC (2002) Reactive oxygen species as agents of wood decay by fungi. Enzyme Microb Technol 30:445–453

    Article  CAS  Google Scholar 

  21. Blanchette RA, Krueger EW, Haight JE, Akhtar M, Akin DE (1996) Cell wall alterations in loblolly pine wood decayed by the white-rot fungus Ceriporiopsis subvermispora. J Biotechnol 53:203–213

    Article  Google Scholar 

  22. Srebotnik E, Messner K, Foisner R (1988) Penetrability of white-rot-degraded pine wood by the lignin peroxidase of Phanerochaete chrysosporium. Appl Environ Microbiol 54:2608–2614

    CAS  Google Scholar 

  23. Wei D, Houtman CJ, Kapich AN, Hunt CG, Cullen D, Hammel KE (2010) Laccase and its role in production of extracellular reactive oxygen species during wood decay by the brown rot basidiomycete Postia placenta. Appl Environ Microbiol 76:2091–2097

    Article  CAS  Google Scholar 

  24. Chen Y-R, Sarkanen S (2010) Macromolecular replication during lignin biosynthesis. Phytochemistry 71:453–462

    Article  CAS  Google Scholar 

  25. Choinowski T, Blodig W, Winterhalter KH, Piontek K (1999) The crystal structure of lignin peroxidase at 1.70 Å resolution reveals a hydroxy group on the Cβ of tryptophan 171: a novel radical site formed during the redox cycle. J Mol Biol 286:809–827

    Article  CAS  Google Scholar 

  26. Sundaramoorthy M, Kishi K, Gold MH, Poulos TL (1997) Crystal structures of substrate binding site mutants of manganese peroxidase. J Biol Chem 272:17574–17580

    Article  CAS  Google Scholar 

  27. Ruiz-Dueñas FJ, Morales M, Pérez-Boada M, Choinowski T, Martínez MJ, Piontek K, Martínez ÁT (2007) Manganese oxidation site in Pleurotus eryngii versatile peroxidase: a site-directed mutagenesis, kinetic, and crystallographic study. Biochemistry 46:66–77

    Article  Google Scholar 

  28. Pérez-Boada M, Ruiz-Dueñas FJ, Pogni R, Basosi R, Choinowski T, Martínez MJ, Piontek K, Martínez AT (2005) Versatile peroxidase oxidation of high redox potential aromatic compounds: site-directed mutagenesis, spectroscopic and crystallographic investigation of three long-range electron transfer pathways. J Mol Biol 354:385–402

    Article  Google Scholar 

  29. Mester T, Ambert-Balay K, Ciofi-Baffoni S, Banci L, Jones AD, Tien M (2001) Oxidation of a tetrameric nonphenolic lignin model compound by lignin peroxidase. J Biol Chem 276:22985–22990

    Article  CAS  Google Scholar 

  30. Hofrichter M, Ullrich R, Pecyna MJ, Liers C, Lundell T (2010) New and classic families of secreted fungal heme peroxidases. Appl Microbiol Biotechnol 87:871–897, and references therein

    Article  CAS  Google Scholar 

  31. Baciocchi E, Fabbri C, Lanzalunga O (2003) Lignin peroxidase-catalyzed oxidation of nonphenolic trimeric lignin model compounds: fragmentation reactions in the intermediate radical cations. J Org Chem 68:9061–9069

    Article  CAS  Google Scholar 

  32. Yokota S, Umezawa T, Higuchi T (1991) Degradation of phenolic βO–4 lignin model dimers by lignin peroxidase of Phanerochaete chrysosporium. Mokuzai Gakkaishi 37:535–541

    CAS  Google Scholar 

  33. Archibald FS (1992) A new assay for lignin-type peroxidases employing the dye Azure B. Appl Environ Microbiol 58:3110–3116

    CAS  Google Scholar 

  34. Bourbonnais R, Paice MG (1988) Veratryl alcohol oxidases from the lignin-degrading basidiomycete Pleurotus sajor-caju. Biochem J 255:445–450

    CAS  Google Scholar 

  35. de la Rubia T, Linares A, Pérez J, Muñoz-Dorado J, Romera J, Martínez J (2002) Characterization of manganese-dependent peroxidase isoenzymes from the ligninolytic fungus Phanerochaete flavido-alba. Res Microbiol 153:547–554

    Article  Google Scholar 

  36. Kuwahara M, Glenn JK, Morgan MA, Gold MH (1984) Separation and characterization of two extracellular H2O2-dependent oxidases from ligninolytic cultures of Phanerochaete chrysosporium. FEBS Lett 169:247–250

    Article  CAS  Google Scholar 

  37. Hammel KE, Cullen D (2008) Role of fungal peroxidases in biological ligninolysis. Curr Opin Plant Biol 11:349–355

    Article  CAS  Google Scholar 

  38. Tuor U, Wariishi H, Schoemaker HE, Gold MH (1992) Oxidation of phenolic arylglycerol β-aryl ether lignin model compounds by manganese peroxidase from Phanerochaete chrysosporium: oxidative cleavage of an α-carbonyl model compound. Biochemistry 31:4986–4995

    Article  CAS  Google Scholar 

  39. Wariishi H, Valli K, Gold MH (1991) In vitro depolymerization of lignin by manganese peroxidase of Phanerochaete chrysosporium. Biochem Biophys Res Commun 176:269–275

    Article  CAS  Google Scholar 

  40. Tien M, Kirk TK, Bull C, Fee JA (1986) Steady-state and transient-state kinetic studies on the oxidation of 3,4-dimethoxybenzyl alcohol catalyzed by the ligninase of Phanerochaete chrysosporium Burds. J Biol Chem 261:1687–1693

    Google Scholar 

  41. Caramelo L, Martínez MJ, Martínez ÁT (1999) A search for ligninolytic peroxidases in the fungus Pleurotus eryngii involving α-keto-γ-thiomethylbutyric acid and lignin model dimers. Appl Environ Microbiol 65:916–922

    CAS  Google Scholar 

  42. Otsuka Y, Sonoki T, Ikeda S, Kajita S, Nakamura M, Katayama Y (2003) Detection and characterization of a novel extracellular fungal enzyme that catalyzes the specific and hydrolytic cleavage of lignin guaiacylglycerol β-aryl ether linkages. Eur J Biochem 270:2353–2362

    Article  CAS  Google Scholar 

  43. Masai E, Katayama Y, Nishikawa S, Yamasaki M, Morohoshi N, Haraguchi T (1989) Detection and localization of a new enzyme catalyzing the β-aryl ether cleavage in the soil bacterium (Pseudomonas paucimobilis SYK-6). FEBS Lett 249:348–352

    Article  CAS  Google Scholar 

  44. Giardina P, Faraco V, Pezzella C, Piscitelli A, Vanhulle S, Sannia G (2010) Laccases: a never-ending story. Cell Mol Life Sci 67:369–385, and references therein

    Article  CAS  Google Scholar 

  45. Bourbonnais R, Leech D, Paice MG (1998) Electrochemical analysis of the interactions of laccase mediators with lignin model compounds. Biochim Biophys Acta 1379:381–390

    Article  CAS  Google Scholar 

  46. Leontievsky A, Myasoedova N, Pozdnyakova N, Golovleva L (1997) ‘Yellow’ laccase of Panus tigrinus oxidizes non-phenolic substrates without electron-transfer mediators. FEBS Lett 413:446–448

    Article  CAS  Google Scholar 

  47. Leontievsky AA, Vares T, Lankinen P, Shergill JK, Pozdnyakova NN, Myasoedova NM, Kalkkinen N, Golovleva LA, Cammack R, Thurston CF, Hatakka A (1997) Blue and yellow laccases of ligninolytic fungi. FEMS Microbiol Lett 156:9–14

    Article  CAS  Google Scholar 

  48. Soden DM, O’Callaghan J, Dobson ADW (2002) Molecular cloning of a laccase isozyme gene from Pleurotus sajor-caju and expression in the heterologous Pichia pastoris host. Microbiology 148:4003–4014

    CAS  Google Scholar 

  49. Guan S-Y, Mlynár J, Sarkanen S (1997) Dehydrogenative polymerization of coniferyl alcohol on macromolecular lignin templates. Phytochemistry 45:911–918

    Article  CAS  Google Scholar 

  50. Lundquist K, Ohlsson B, Simonson R (1977) Isolation of lignin by means of liquid-liquid extraction. Svensk Papperstidn 80(5):143–144

    CAS  Google Scholar 

  51. Contreras S, Gaspar AR, Guerra A, Lucia LA, Argyropoulos DS (2008) Propensity of lignin to associate: light scattering photometry study with native lignins. Biomacromolecules 9:3362–3369

    Article  CAS  Google Scholar 

  52. Wyatt PJ (1993) Light scattering and the absolute characterization of macromolecules. Anal Chim Acta 272:1–40

    Article  CAS  Google Scholar 

  53. Sarkanen S (1991) Enzymatic lignin degradation—an extracurricular view. ACS Symp Ser 460:247–269

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge a subcontract from the BioEnergy Science Center, which is a US Department of Energy Bioenergy Research Center supported by the Office of Biological and Environmental Research in the DOE Office of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simo Sarkanen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Chen, Yr., Sarkanen, S., Wang, YY. (2012). Lignin-Degrading Enzyme Activities. In: Himmel, M. (eds) Biomass Conversion. Methods in Molecular Biology, vol 908. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-956-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-956-3_21

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-955-6

  • Online ISBN: 978-1-61779-956-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics