Skip to main content

RAD Paired-End Sequencing for Local De Novo Assembly and SNP Discovery in Non-model Organisms

  • Protocol
  • First Online:
Data Production and Analysis in Population Genomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 888))

Abstract

Restriction-site Associated DNA (RAD) markers are rapidly becoming a standard for SNP discovery and genotyping studies even in organisms without a sequenced reference genome. It is difficult, however, to identify genes nearby RAD markers of interest or move from SNPs identified by RAD to a high-throughput genotyping assay. Paired-end sequencing of RAD fragments can alleviate these problems by generating a set of paired sequences that can be locally assembled into high-quality contigs up to 1 kb in length. These contigs can then be used for SNP identification, homology searching, or high-throughput assay primer design. In this chapter, we offer suggestions on how to design a RAD paired-end (RAD-PE) sequencing project and the protocol for creating paired-end RAD libraries suitable for Illumina sequencers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Miller MR, Dunham JP, Amores A, Cresko WA, Johnson EA (2007) Rapid and cost-effective polymorphism identification and genotyping using restriction site associated DNA (RAD) markers. Genome Res 17:240–248

    Article  PubMed  CAS  Google Scholar 

  2. Miller MR, Atwood TS, Eames BF et al (2007) RAD marker microarrays enable rapid mapping of zebrafish mutations. Genome Biol 8:R105

    Article  PubMed  Google Scholar 

  3. Lewis ZA, Shiver AL, Stiffler N et al (2007) High-density detection of restriction-site-associated DNA markers for rapid mapping of mutated loci in Neurospora. Genetics 177: 1163–1171

    Article  PubMed  CAS  Google Scholar 

  4. Baird NA, Etter PD, Atwood TS et al (2008) Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS One 3:e3376. doi:10.1371/journal.pone.0003376

    Article  PubMed  Google Scholar 

  5. Hohenlohe P, Bassham S, Stiffler N, Johnson EA, Cresko WA (2010) Population genomics of parallel adaptation in threespine stickleback using sequenced RAD tags. PLoS Genet 6:e1000862

    Article  PubMed  Google Scholar 

  6. Emerson KJ, Merz CR, Catchen JM et al (2010) Resolving post-glacial phylogeography using high throughput sequencing. Proc Natl Acad Sci U S A 107:16196–16200

    Article  PubMed  CAS  Google Scholar 

  7. Etter PD, Preston JL, Bassham S, Cresko WA, Johnson EA (2011) Local de novo assembly of RAD paired-end contigs using short sequencing reads. PLoS One 6(4):e18561

    Article  PubMed  CAS  Google Scholar 

  8. Fan JB, Oliphant A, Shen R et al (2003) Highly parallel SNP genotyping. Cold Spring Harb Symp Quant Biol 68:69–78

    Article  PubMed  CAS  Google Scholar 

  9. Fan JB, Chee MS, Gunderson KL (2006) Highly parallel genomic assays. Nat Rev Genet 7:632–644

    Article  PubMed  CAS  Google Scholar 

  10. Cox A, Dunning AM, Garcia-Closas M et al (2007) A common coding variant in CASP8 is associated with breast cancer risk. Nat Genet 39:352–358

    Article  PubMed  CAS  Google Scholar 

  11. Gabriel S, Ziaugra L, Tabbaa D (2009) SNP genotyping using the Sequenom MassARRAY iPLEX platform. Curr Protoc Hum Genet Chapter 2:Unit 2.12

    Google Scholar 

  12. Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18:821–829

    Article  PubMed  CAS  Google Scholar 

  13. Hercus C (2009) www.novocraft.com. Accessed Nov 2009

  14. Li H, Durbin R (2010) Fast and accurate long read alignment with Burrows-Wheeler transform. Bioinformatics 26:589–595

    Article  PubMed  Google Scholar 

  15. Quail MA, Kozarewa I, Smith F et al (2008) A large genome center’s improvements to the Illumina sequencing system. Nat Methods 5:1005–1010

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the University of Oregon researchers who have helped troubleshoot preliminary versions of this protocol. The project described was supported by grant R21HG003834 from the National Human Genome Research Institute (E.A.J.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Johnson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this protocol

Cite this protocol

Etter, P.D., Johnson, E. (2012). RAD Paired-End Sequencing for Local De Novo Assembly and SNP Discovery in Non-model Organisms. In: Pompanon, F., Bonin, A. (eds) Data Production and Analysis in Population Genomics. Methods in Molecular Biology, vol 888. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-870-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-870-2_9

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-869-6

  • Online ISBN: 978-1-61779-870-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics