Skip to main content

Population Genomic Analysis of Model and Nonmodel Organisms Using Sequenced RAD Tags

  • Protocol
  • First Online:
Data Production and Analysis in Population Genomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 888))

Abstract

The evolutionary processes of mutation, migration, genetic drift, and natural selection shape patterns of genetic variation among individuals, populations, and species, and they can do so differentially across genomes. The field of population genomics provides a comprehensive genome-scale view of these processes, even beyond traditional model organisms. Until recently, genome-wide studies of genetic variation have been prohibitively expensive. However, next-generation sequencing (NGS) technologies are revolutionizing the field of population genomics, allowing for genetic analysis at scales not previously possible even in organisms for which few genomic resources presently exist. To speed this revolution in evolutionary genetics, we and colleagues developed Restriction site Associated DNA (RAD) sequencing, a method that uses Illumina NGS to simultaneously type and score tens to hundreds of thousands of single nucleotide polymorphism (SNP) markers in hundreds of individuals for minimal investment of resources. The core molecular protocol is described elsewhere in this volume, which can be modified to suit a diversity of evolutionary genetic questions. In this chapter, we outline the conceptual framework of population genomics, relate genomic patterns of variation to evolutionary processes, and discuss how RAD sequencing can be used to study population genomics. In addition, we discuss bioinformatic considerations that arise from unique aspects of NGS data as compared to traditional marker based approaches, and we outline some general analytical approaches for RAD-seq and similar data, including a computational pipeline that we developed called Stacks. This software can be used for the analysis of RAD-seq data in organisms with and without a reference genome. Nonetheless, the development of analytical tools remains in its infancy, and further work is needed to fully quantify sampling variance and biases in these data types. As data-gathering technology continues to advance, our ability to understand genomic evolution in natural populations will be limited more by conceptual and analytical weaknesses than by the amount of molecular data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fisher RA (1958) The genetical theory of ­natural selection. Dover, New York

    Google Scholar 

  2. Wright S (1931) Evolution in Mendelian populations. Genetics 16:97–159

    PubMed  CAS  Google Scholar 

  3. Kimura M (1991) Recent development of the neutral theory viewed from the Wrightian tradition of theoretical population genetics. Proc Natl Acad Sci USA 88:5969–5973

    Article  PubMed  CAS  Google Scholar 

  4. Wright S (1978) Evolution and the genetics of populations. University of Chicago Press, Chicago

    Google Scholar 

  5. Avise JC (2004) Molecular markers, natural history and evolution, 2nd edn. Sinauer Associates, Sunderland, MA

    Google Scholar 

  6. Birney E, Stamatoyannopoulos JA, Dutta A et al (2007) Identification and analysis of ­functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447:799–816

    Article  PubMed  CAS  Google Scholar 

  7. Stranger BE, Nica AC, Forrest MS et al (2007) Population genomics of human gene expression. Nat Genet 39:1217–1224

    Article  PubMed  CAS  Google Scholar 

  8. Sabeti PC, Varilly P, Fry B et al (2007) Genome-wide detection and characterization of positive selection in human populations. Nature 449:913–918

    Article  PubMed  CAS  Google Scholar 

  9. Beaumont MA, Balding DJ (2004) Identifying adaptive genetic divergence among populations from genome scans. Mol Ecol 13:969–980

    Article  PubMed  CAS  Google Scholar 

  10. Liti G, Carter DM, Moses AM et al (2009) Population genomics of domestic and wild yeasts. Nature 458:337–341

    Article  PubMed  CAS  Google Scholar 

  11. Rockman MV, Kruglyak L (2009) Recombinational landscape and population genomics of Caenorhabditis elegans. PLoS Genet 5:e1000419

    Article  PubMed  Google Scholar 

  12. Butlin RK (2010) Population genomics and speciation. Genetica 138:409–418

    Article  PubMed  Google Scholar 

  13. Luikart G, England PR, Tallmon D, Jordan S, Taberlet P (2003) The power and promise of population genomics: from genotyping to genome typing. Nat Rev Genet 4:981–994

    Article  PubMed  CAS  Google Scholar 

  14. Slatkin M (2008) Linkage disequilibrium – understanding the evolutionary past and ­mapping the medical future. Nat Rev Genet 9:477–485

    Article  PubMed  CAS  Google Scholar 

  15. Pritchard JK, Pickrell JK, Coop G (2010) The genetics of human adaptation: hard sweeps, soft sweeps, and polygenic adaptation. Curr Biol 20:R208–R215

    Article  PubMed  CAS  Google Scholar 

  16. Charlesworth B, Betancourt AJ, Kaiser VB, Gordo I (2009) Genetic recombination and molecular evolution. Cold Spring Harb Symp Quant Biol 74:177–186

    Article  PubMed  CAS  Google Scholar 

  17. Boitard S, Schlotterer C, Futschik A (2009) Detecting selective sweeps: a new approach based on hidden markov models. Genetics 181:1567–1578

    Article  PubMed  CAS  Google Scholar 

  18. Nielsen R, Williamson S, Kim Y et al (2005) Genomic scans for selective sweeps using SNP data. Genome Res 15:1566–1575

    Article  PubMed  CAS  Google Scholar 

  19. Pickrell JK, Coop G, Novembre J et al (2009) Signals of recent positive selection in a worldwide sample of human populations. Genome Res 19:826–837

    Article  PubMed  CAS  Google Scholar 

  20. Grossman SR, Shylakhter I, Karlsson EK et al (2010) A composite of multiple signals distinguishes causal variants in regions of positive selection. Science 327:883–886

    Article  PubMed  CAS  Google Scholar 

  21. Przeworski M, Coop G, Wall JD (2005) The signature of positive selection on standing genetic variation. Evolution 59:2312–2323

    Article  PubMed  Google Scholar 

  22. Hermisson J, Pennings PS (2005) Soft sweeps: molecular population genetics of adaptation from standing genetic variation. Genetics 169:2335–2352

    Article  PubMed  CAS  Google Scholar 

  23. Storz JF (2005) Using genome scans of DNA polymorphism to infer adaptive population divergence. Mol Ecol 14:671–688

    Article  PubMed  CAS  Google Scholar 

  24. Hohenlohe PA, Phillips PC, Cresko WA (2010) Using population genomics to detect selection in natural populations: key concepts and methodological considerations. Int J Plant Sci 171(9):1059–1071

    Google Scholar 

  25. Teshima KM, Coop G, Przeworski M (2006) How reliable are empirical genomic scans for selective sweeps? Genome Res 16:702–712

    Article  PubMed  CAS  Google Scholar 

  26. Wares JP (2010) Natural distributions of mitochondrial sequence diversity support new null hypotheses. Evolution 64:1136–1142

    Article  PubMed  Google Scholar 

  27. Hohenlohe P, Bassham S, Stiffler N, Johnson EA, Cresko WA (2010) Population genomics of parallel adaptation in threespine stickleback using sequenced RAD tags. PLoS Genet 6:e1000862

    Article  PubMed  Google Scholar 

  28. Akey JM (2009) Constructing genomic maps of positive selection in humans: where do we go from here? Genome Res 19:711–722

    Article  PubMed  CAS  Google Scholar 

  29. Pool JE, Hellmann I, Jensen JD, Nielsen R (2010) Population genetic inference from genomic sequence variation. Genome Res 20:291–300

    Article  PubMed  CAS  Google Scholar 

  30. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5:621–628

    Article  PubMed  CAS  Google Scholar 

  31. Marguerat S, Wilhelm BT, Bahler J (2008) Next-generation sequencing: applications beyond genomes. Biochem Soc Trans 36:1091–1096

    Article  PubMed  CAS  Google Scholar 

  32. Mardis ER (2008) Next-generation DNA sequencing methods. Annu Rev Genomics Hum Genet 9:387–402

    Article  PubMed  CAS  Google Scholar 

  33. Shendure J, Ji H (2008) Next-generation DNA sequencing. Nat Biotechnol 26:1135–1145

    Article  PubMed  CAS  Google Scholar 

  34. Mardis ER (2008) The impact of next-generation sequencing technology on genetics. Trends Genet 24:133–141

    Article  PubMed  CAS  Google Scholar 

  35. Van Tassell CP, Smith TP, Matukumalli LK et al (2008) SNP discovery and allele frequency estimation by deep sequencing of reduced representation libraries. Nat Methods 5:247–252

    Article  PubMed  Google Scholar 

  36. Baird NA, Etter PD, Atwood TS et al (2008) Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS One 3:e3376

    Article  PubMed  Google Scholar 

  37. Emerson KJ, Merz CR, Catchen JM et al (2010) Resolving post-glacial phylogeography using high throughput sequencing. Proc Natl Acad Sci USA

    Google Scholar 

  38. Gompert Z, Lucas LK, Fordyce JA, Forister ML, Nice CC (2010) Secondary contact between Lycaeides idas and L. melissa in the Rocky Mountains: extensive admixture and a patchy hybrid zone. Mol Ecol 19:3171–3192

    Article  PubMed  CAS  Google Scholar 

  39. Rokas A, Abbot P (2009) Harnessing genomics for evolutionary insights. Trends Ecol Evol 24:192–200

    Article  PubMed  Google Scholar 

  40. Miller MR, Dunham JP, Amores A, Cresko WA, Johnson EA (2007) Rapid and cost-effective polymorphism identification and genotyping using restriction site associated DNA (RAD) markers. Genome Res 17:240–248

    Article  PubMed  CAS  Google Scholar 

  41. Hohenlohe PA, Amish JS, Catchen MJ, Allendorf WF, Luikart G (2011) Next-Generation RAD Sequencing Identifies Thousands of SNPs for Assessing Hybridization Between Rainbow and Westslope Cutthroat Trout. Molecular Ecology Resources 11 (Suppl 1):117–122

    Google Scholar 

  42. Dettman JR, Anderson JB, Kohn LM (2010) Genome-wide investigation of reproductive isolation in experimental lineages and natural species of Neurospora: identifying candidate regions by microarray-based genotyping and mapping. Evolution 64:694–709

    Article  PubMed  CAS  Google Scholar 

  43. Lewis ZA, Shiver AL, Stiffler N et al (2007) High-density detection of restriction-site-­associated DNA markers for rapid mapping of mutated loci in Neurospora. Genetics 177:1163–1171

    Article  PubMed  CAS  Google Scholar 

  44. Miller MR, Atwood TS, Eames BF et al (2007) RAD marker microarrays enable rapid mapping of zebrafish mutations. Genome Biol 8:R105

    Article  PubMed  Google Scholar 

  45. Amores A, Catchen J, Ferrara A, Fontenot Q, Postlethwait JH (2011) Genome Evolution and Meiotic Maps by Massively Parallel DNA Sequencing: Spotted Gar, an Outgroup for the Teleost Genome Duplication. Genetics 188(4): 799–808

    Google Scholar 

  46. Ewing B, Green P (1998) Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res 8:186–194

    PubMed  CAS  Google Scholar 

  47. Ewing B, Hillier L, Wendl MC, Green P (1998) Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res 8:175–185

    PubMed  CAS  Google Scholar 

  48. Altschul SF, Madden TL, Schaffer AA et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  49. Kent WJ (2002) BLAT – the BLAST-like alignment tool. Genome Res 12:656–664

    PubMed  CAS  Google Scholar 

  50. Vinga S, Almeida J (2003) Alignment-free sequence comparison-a review. Bioinformatics 19:513–523

    Article  PubMed  CAS  Google Scholar 

  51. Simpson JT, Wong K, Jackman SD et al (2009) ABySS: a parallel assembler for short read sequence data. Genome Res 19:1117–1123

    Article  PubMed  CAS  Google Scholar 

  52. Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18:821–829

    Article  PubMed  CAS  Google Scholar 

  53. Charlesworth B, Nordborg M, Charlesworth D (1997) The effects of local selection, balanced polymorphism and background selection on equilibrium patterns of genetic diversity in subdivided populations. Genet Res 70:155–174

    Article  PubMed  CAS  Google Scholar 

  54. Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595

    PubMed  CAS  Google Scholar 

  55. Thornton K (2005) Recombination and the properties of Tajima’s D in the context of approximate-likelihood calculation. Genetics 171:2143–2148

    Article  PubMed  CAS  Google Scholar 

  56. Excoffier L, Hofer T, Foll M (2009) Detecting loci under selection in a hierarchically structured population. Heredity 103:285–298

    Article  PubMed  CAS  Google Scholar 

  57. Bedford T, Cobey S, Beerli P, Pascual M (2010) Global migration dynamics underlie evolution and persistence of human influenza A (H3N2). PLoS Pathog 6:e1000918

    Article  PubMed  Google Scholar 

  58. Beerli P, Palczewski M (2010) Unified framework to evaluate panmixia and migration direction among multiple sampling locations. Genetics 185:313–326

    Article  PubMed  Google Scholar 

  59. Gutenkunst RN, Hernandez RD, Williamson SH, Bustamante CD (2009) Inferring the joint demographic history of multiple populations from multidimensional SNP frequency data. PLoS Genet 5:e1000695

    Article  PubMed  Google Scholar 

  60. Lynch M (2009) Estimation of allele frequencies from high-coverage genome-sequencing projects. Genetics 182:295–301

    Article  PubMed  CAS  Google Scholar 

  61. Holsinger KE, Weir BS (2009) Genetics in geographically structure populations: defining, estimating and interpreting FST. Nat Rev Genet 10:639–650

    Article  PubMed  CAS  Google Scholar 

  62. Schlotterer C, Kauer M, Dieringer D (2004) Allele excess at neutrally evolving microsatellites and the implications for tests of neutrality. Proc Biol Sci 271:869–874

    Article  PubMed  Google Scholar 

  63. Kelly JK (2006) Geographical variation in selection, from phenotypes to molecules. Am Nat 167:481–495

    Article  PubMed  Google Scholar 

  64. Storz JF, Kelly JK (2008) Effects of spatially varying selection on nucleotide diversity and linkage disequilibrium: insights from deer mouse globin genes. Genetics 180:367–379

    Article  PubMed  CAS  Google Scholar 

  65. Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    Article  Google Scholar 

  66. Slatkin M (1991) Inbreeding coefficients and coalescence times. Genet Res 58:167–175

    Article  PubMed  CAS  Google Scholar 

  67. Beaumont MA (2005) Adaptation and speciation: what can Fst tell us? Trends Ecol Evol 20:435–440

    Article  PubMed  Google Scholar 

  68. Sabeti P, Reich DE, Higgins JM et al (2002) Detecting recent positive selection in the human genome from haplotype structure. Nature 419:832–837

    Article  PubMed  CAS  Google Scholar 

  69. Kane NC, Rieseberg LH (2007) Selective sweeps reveal candidate genes for adaptation to drought and salt tolerance in common sunflower, Helianthus annuus. Genetics 175: 1823–1834

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank members of the Cresko and Johnson laboratories, and numerous other University of Oregon researchers, for discussions about the use of NGS data for population genomic studies. This work has been generously supported by research grants from the US National Institutes of Health (1R24GM079486-01A1, F32GM076995 and F32GM095213) and the US National Science Foundation (IOS-0642264, IOS-0843392 and DEB-0919090).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William A. Cresko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this protocol

Cite this protocol

Hohenlohe, P.A., Catchen, J., Cresko, W.A. (2012). Population Genomic Analysis of Model and Nonmodel Organisms Using Sequenced RAD Tags. In: Pompanon, F., Bonin, A. (eds) Data Production and Analysis in Population Genomics. Methods in Molecular Biology, vol 888. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-870-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-870-2_14

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-869-6

  • Online ISBN: 978-1-61779-870-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics