Skip to main content

Generation of a Bioengineered Tooth by Using a Three-Dimensional Cell Manipulation Method (Organ Germ Method)

  • Protocol
  • First Online:
Odontogenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 887))

Abstract

The arrangement of cells within a tissue plays an essential role in organogenesis, including tooth development. Organ morphogenesis and physiological functions induced by three-dimensional tissue organization are well known to be regulated by the proper spatiotemporal organization of various signaling molecules, including cytokines, extracellular matrix proteins, and adhesion molecules. Development of a three-dimensional cell manipulation technology to create a bioengineered organ germ, designated as the organ germ method, enabled the generation of a structurally correct and fully functional bioengineered tooth in vivo. This method is expected to be utilized as a valuable technique for analyzing gene and protein functions during organogenesis. Here, we describe protocols for tooth germ reconstitution using the organ germ method and methods for analyzing tooth development in vitro and in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tucker, A. and Sharpe, P. (2004) The cutting-edge of mammalian development; how the embryo makes teeth. Nat Rev Genet 5, 499–508

    Article  PubMed  CAS  Google Scholar 

  2. Ikeda, E. and Tsuji, T. (2008) Growing bioengineered teeth from single cells: potential for dental regenerative medicine. Expert Opin Biol Ther 8, 735–744

    Article  PubMed  CAS  Google Scholar 

  3. Pispa, J. and Thesleff, I. (2003) Mechanisms of ectodermal organogenesis. Dev Biol 262, 195–205

    Article  PubMed  CAS  Google Scholar 

  4. Fukumoto, S. and Yamada, Y. (2005) Review: extracellular matrix regulates tooth morphogenesis. Connect Tissue Res 46, 220–226

    Article  PubMed  CAS  Google Scholar 

  5. Saito, M., et al. (2009) The KK-Periome database for transcripts of periodontal ligament development. J Exp Zool B Mol Dev Evol 312B, 495–502

    Article  PubMed  CAS  Google Scholar 

  6. Cai, J., et al. (2007) Patterning the size and number of tooth and its cusps, Dev. Biol. 304, 499–507

    Article  PubMed  CAS  Google Scholar 

  7. Ishida, K., et al. (2011) The regulation of tooth morphogenesis is associated with epithelial cell proliferation and the expression of Sonic hedgehog through epithelial-mesenchymal interactions. BBRC 405 455–461

    CAS  Google Scholar 

  8. Thesleff, I. (2003) Epithelial-mesenchymal signalling regulating tooth morphogenesis. J Cell Sci 116, 1647–1648

    Article  PubMed  CAS  Google Scholar 

  9. Langer, R.S. and Vacanti, J.P. (1999) Tissue engineering: the challenges ahead. Sci Am 280, 86–89

    Article  PubMed  CAS  Google Scholar 

  10. Atala, A. (2005) Tissue engineering, stem cells and cloning: current concepts and changing trends. Expert Opin Biol Ther 5, 879–892

    Article  PubMed  CAS  Google Scholar 

  11. Song, Y et al. (2006) Application of lentivirus-mediated RNAi in studying gene function in mammalian tooth development. Dev Dyn 235 (5), 1334–44

    Article  PubMed  CAS  Google Scholar 

  12. Mantesso, A. and Sharpe, P. (2009) Dental stem cells for tooth regeneration and repair. Expert Opin Biol Ther 9, 1143–1154

    Article  PubMed  CAS  Google Scholar 

  13. Sharpe, PT., and Young, CS. (2005) Test-tube teeth. Sci Am 293:34–41.

    Article  PubMed  Google Scholar 

  14. Brockes, J.P. and Kumar, A. (2005) Appendage regeneration in adult vertebrates and implications for regenerative medicine. Science 310, 1919–1923

    Article  PubMed  CAS  Google Scholar 

  15. Watt, F.M. and Hogan, B.L. (2000) Out of Eden: stem cells and their niches. Science 287, 1427–1430

    Article  PubMed  CAS  Google Scholar 

  16. Nakao, K., et al. (2007) The development of a bioengineered organ germ method. Nat Methods 4, 227–230

    Article  PubMed  CAS  Google Scholar 

  17. Ikeda, E., et al. (2009) Fully functional bioengineered tooth replacement as an organ replacement therapy. Proc Natl Acad Sci USA 106, 13475–13480

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Tsuji .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Oshima, M., Ogawa, M., Yasukawa, M., Tsuji, T. (2012). Generation of a Bioengineered Tooth by Using a Three-Dimensional Cell Manipulation Method (Organ Germ Method). In: Kioussi, C. (eds) Odontogenesis. Methods in Molecular Biology, vol 887. Humana Press. https://doi.org/10.1007/978-1-61779-860-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-860-3_14

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-859-7

  • Online ISBN: 978-1-61779-860-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics