Skip to main content

Estimating Total Nephron Number in the Adult Kidney Using the Physical Disector/Fractionator Combination

  • Protocol
  • First Online:
Kidney Development

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 886))

Abstract

Nephron number has emerged as a useful parameter for assessing the roles of specific genes and feto-maternal environmental factors in kidney development. Nephron number is also of clinical interest due to increasing evidence suggesting that low nephron number is associated with increased risk for developing chronic adult disease, including cardiovascular and renal disease. The physical disector/fractionator combination is considered the gold standard method for estimating total nephron number in kidneys. Here we describe the use of this method to estimate total nephron number in mouse and rat kidneys, and variations to the method required to estimate nephron number in larger species, including human.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hoy WE, Ingelfinger JR, Hallan S et al (2010) The early development of the kidney and implications for adult health. J Dev Orig Health Dis 1:216–233

    Article  CAS  PubMed  Google Scholar 

  2. Puelles VG, Hoy WE, Hughson MD et al (2011) Glomerular number and size variability and risk for kidney disease. Curr Opin Nephrol Hypertens 20:7–15

    Article  PubMed  Google Scholar 

  3. Hughson MD, Douglas-Denton R, Bertram JF et al (2006) Hypertension, glomerular number, and birth weight in African Americans and white subjects in the southeastern United States. Kidney Int 69:671–678

    Article  CAS  PubMed  Google Scholar 

  4. Hoy WE, Hughson MD, Singh GR et al (2006) Reduced nephron number and glomerulomegaly in Australian aborigines: a group at high risk for renal disease and hypertension. Kidney Int 70:104–110

    Article  CAS  PubMed  Google Scholar 

  5. Hoy WE, Bertram JF, Douglas-Denton R et al (2008) Nephron number, glomerular volume, renal disease and hypertension. Curr Opin Nephrol Hypertens 17:258–265

    Article  PubMed  Google Scholar 

  6. Hoy WE, Douglas-Denton RN, Hughson MD et al (2003) A stereological study of glomerular number and volume: preliminary findings in a multiracial study of kidneys at autopsy. Kidney Int 83:S31–S37

    Article  Google Scholar 

  7. McNamara BJ, Diouf B, Hughson MD et al (2008) Renal pathology, glomerular number and volume in a West African urban community. Nephrol Dial Transplant 23:2576–2585

    Article  PubMed Central  PubMed  Google Scholar 

  8. Nyengaard JR, Bendtsen TF (1992) Glomerular number and size in relation to age, kidney weight, and body surface in normal man. Anat Rec 232:194–201

    Article  CAS  PubMed  Google Scholar 

  9. Gray SP, Denton KM, Cullen-McEwen LA et al (2010) Prenatal exposure to alcohol reduces nephron number and raises blood pressure in progeny. J Am Soc Nephrol 21:1891–1902

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Hoppe CC, Evans RG, Moritz KM et al (2007) Combined prenatal and postnatal protein restriction influences adult kidney structure, function, and arterial pressure. Am J Physiol Regul Integr Comp Physiol 292:R462–R469

    Article  CAS  PubMed  Google Scholar 

  11. Singh RR, Cullen-McEwen LA, Kett MM et al (2007) Prenatal corticosterone exposure results in altered AT1/AT2, nephron deficit and hypertension in the rat offspring. J Physiol 579:503–513

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Cullen-McEwen LA, Drago J, Bertram JF (2001) Nephron endowment in glial cell line-derived neurotrophic factor (GDNF) heterozygous mice. Kidney Int 60:31–36

    Article  CAS  PubMed  Google Scholar 

  13. Sims-Lucas S, Cullen-McEwen L, Eswarakumar VP et al (2009) Deletion of Frs2α from the ureteric epithelium causes renal hypoplasia. Am J Physiol Renal Physiol 297:F1208–F1219

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Walker KA, Sims-Lucas S, Caruana G et al (2011) Betaglycan is required for the establishment of nephron endowment in the mouse. PLoS One 6:e18723

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Moritz KM, Singh RR, Probyn ME et al (2009) Developmental programming of a reduced nephron endowment: more than just a baby’s birth weight. Am J Physiol Renal Physiol 296:F1–F9

    Article  CAS  PubMed  Google Scholar 

  16. Douglas-Denton RN, McNamara BJ, Hoy WE et al (2006) Does nephron number matter in the development of kidney disease? Ethn Dis 16:40–45

    Google Scholar 

  17. Hughson M, Farris AB III, Douglas-Denton R et al (2003) Glomerular number and size in autopsy kidneys: the relationship to birth weight. Kidney Int 63:2113–2122

    Article  PubMed  Google Scholar 

  18. Keller G, Zimmer G, Mall G et al (2003) Nephron number in patients with primary hypertension. N Engl J Med 348:101–108

    Article  PubMed  Google Scholar 

  19. McNamara BJ, Diouf B, Douglas-Denton RN et al (2010) A comparison of nephron number, glomerular volume and kidney weight in Senegalese Africans and African Americans. Nephrol Dial Transplant 25:1514–1520

    Article  PubMed Central  PubMed  Google Scholar 

  20. McNamara BJ, Diouf B, Hughson MD et al (2009) Associations between age, body size and nephron number with individual glomerular volumes in urban West African males. Nephrol Dial Transplant 24:1500–1506

    Article  PubMed Central  PubMed  Google Scholar 

  21. Sterio D (1984) The unbiased estimation of number and sizes of arbitrary particles using the disector. J Microsc 134:127–136

    Article  CAS  PubMed  Google Scholar 

  22. Samuel T, Hoy WE, Douglas-Denton R et al (2005) Determinants of glomerular volume in different cortical zones of the human kidney. J Am Soc Nephrol 16:3102–3109

    Article  PubMed  Google Scholar 

  23. Zimanyi MA, Hoy WE, Douglas-Denton RN et al (2009) Nephron number and individual glomerular volumes in male Caucasian and African American subjects. Nephrol Dial Transplant 24:2428–2433

    Article  PubMed Central  PubMed  Google Scholar 

  24. Cullen-McEwen LA, Kett MM, Dowling J et al (2003) Nephron number, renal function, and arterial pressure in aged GDNF heterozygous mice. Hypertension 41:335–340

    Article  CAS  PubMed  Google Scholar 

  25. Shweta A, Cullen-McEwen LA, Kett MM et al (2009) Glomerular surface area is normalized in mice born with a nephron deficit: no role for AT1 receptors. Am J Physiol Renal Physiol 296:F583–F589

    Article  CAS  PubMed  Google Scholar 

  26. Chen HM, Liu ZH, Zeng CH et al (2006) Podocyte lesions in patients with obesity-related glomerulopathy. Am J Kidney Dis 48:772–779

    Article  PubMed  Google Scholar 

  27. Cho M, Hong E, Lee T et al (2007) Pathophysiology of minimal change nephrotic syndrome and focal segmental glomerulosclerosis. Nephrology (Carlton) 12:S11–S14

    Article  CAS  Google Scholar 

  28. Fogo A (2000) Glomerular hypertension, abnormal glomerular growth, and progression of renal diseases. Kidney Int Suppl 75:S15–S21

    Article  CAS  PubMed  Google Scholar 

  29. Hall JE, Brands MW, Henegar JR (1999) Mechanisms of hypertension and kidney disease in obesity. Ann N Y Acad Sci 892:91–107

    Article  CAS  PubMed  Google Scholar 

  30. Lemley K (2003) A basis for accelerated progression of diabetic nephropathy in Pima Indians. Kidney Int Suppl 83:S38–S42

    Article  PubMed  Google Scholar 

  31. Lemley K (2008) Diabetes and chronic kidney disease: lessons from the Pima Indians. Pediatr Nephrol 23:1933–1940

    Article  PubMed  Google Scholar 

  32. Shen WW, Chen HM, Chen H et al (2010) Obesity-related glomerulopathy: body mass index and proteinuria. Clin J Am Soc Nephrol 5:1401–1409

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Suzuki H, Tokuriki T, Saito K et al (2005) Glomerular hyperfiltration and hypertrophy in the rat hypoplastic kidney as a model of oligomeganephronic disease. Nephrol Dial Transplant 20:1362–1369

    Article  CAS  PubMed  Google Scholar 

  34. Vats AN, Costello B, Mauer M (2003) Glomerular structural factors in progression of congenital nephrotic syndrome. Pediatr Nephrol 18:234–240

    PubMed  Google Scholar 

  35. Zhu WW, Chen HP, Ge YC et al (2009) Ultrastructural changes in the glomerular filtration barrier and occurrence of proteinuria in Chinese patients with type 2 diabetic nephropathy. Diabetes Res Clin Pract 86:199–207

    Article  CAS  PubMed  Google Scholar 

  36. David FS, Cullen-McEwen L, Wu XS et al (2010) Regulation of kidney development by Shp2: an unbiased stereological analysis. Anat Rec 293:2147–2153

    Article  CAS  Google Scholar 

  37. Dickinson H, Walker DW, Cullen-McEwen L et al (2005) The spiny mouse (Acomys cahirinus) completes nephrogenesis before birth. Am J Physiol Renal Physiol 289:F273–F279

    Article  CAS  PubMed  Google Scholar 

  38. Moritz KM, Johnson K, Douglas-Denton R et al (2002) Maternal glucocorticoid treatment programs alterations in the renin-angiotensin system of the ovine fetal kidney. Endocrinology 143:4455–4463

    Article  CAS  PubMed  Google Scholar 

  39. Wintour EM, Moritz KM, Johnson K et al (2003) Reduced nephron number in adult sheep, hypertensive as a result of prenatal glucocorticoid treatment. J Physiol 549:929–935

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Mitchell E, Louey S, Cock M et al (2004) Nephron endowment and filtration surface area in the kidney after growth restriction of fetal sheep. Pediatr Res 55:769–773

    Article  PubMed  Google Scholar 

  41. Gundersen HJ, Bagger P, Bendtsen TF et al (1988) The new stereological tools: disector, fractionator, nucleator and end point sampled intercepts and their use in pathological research and diagnosis. Acta Pathol Microbiol Immunol Scand 96:857–881

    Article  CAS  Google Scholar 

  42. Gundersen HJG, Bendtsen TF, Korbo L et al (1988) Some new, simple and efficient and stereological methods and their use in pathological research and diagnosis. Acta Pathol Microbiol Immunol Scand 96:379–394

    Article  CAS  Google Scholar 

  43. Gundersen H, Jensen E (1987) The efficiency of systematic sampling in stereology and its prediction. J Microsc 147:229–263

    Article  CAS  PubMed  Google Scholar 

  44. Bertram J (1995) Analyzing renal glomeruli with the new stereology. Int Rev Cytol 161:111–172

    Article  CAS  PubMed  Google Scholar 

  45. Gundersen H (1977) Notes on the estimation of the numerical density of arbitrary profiles: the edge effect. J Microsc 111:219

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John F. Bertram .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Cullen-McEwen, L.A., Douglas-Denton, R.N., Bertram, J.F. (2012). Estimating Total Nephron Number in the Adult Kidney Using the Physical Disector/Fractionator Combination. In: Michos, O. (eds) Kidney Development. Methods in Molecular Biology™, vol 886. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-851-1_30

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-851-1_30

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-850-4

  • Online ISBN: 978-1-61779-851-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics