Skip to main content

High-Resolution In Vivo Imaging of Fluorescent Proteins Using Window Chamber Models

  • Protocol
  • First Online:
In Vivo Cellular Imaging Using Fluorescent Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 872))

Abstract

Fluorescent proteins enable in vivo characterization of a wide and growing array of morphological and functional biomarkers. To fully capitalize on the spatial and temporal information afforded by these reporter proteins, a method for imaging these proteins at high resolution longitudinally is required. This chapter describes the use of window chamber models as a means of imaging fluorescent proteins and other optical parameters. Such models essentially involve surgically implanting a window through which tumor or normal tissue can be imaged using existing microscopy techniques. This enables acquisition of high-quality images down to the cellular or subcellular scale, exploiting the diverse array of optical contrast mechanisms, while also maintaining the native microenvironment of the tissue of interest. This makes these techniques applicable to a wide array of problems in the biomedical sciences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shimomura, O., Johnson, F., and Saiga, Y. (1962) Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea., J Cell Comp Physiol 59, 223–239.

    Article  PubMed  CAS  Google Scholar 

  2. Zimmer, M. (2009) GFP: from jellyfish to the Nobel prize and beyond., Chem Soc Rev 38, 2823–2832.

    Article  PubMed  CAS  Google Scholar 

  3. Shcherbo, D., Merzlyak, E., Chepurnykh, T., Fradkov, A., Ermakova, G., Solovieva, E., Lukyanov, K., Bogdanova, E., Zaraisky, A., Lukyanov, S., and Chudakov, D. (2007) Bright far-red fluorescent protein for whole-body imaging., Nat Methods 4, 741–746.

    Article  PubMed  CAS  Google Scholar 

  4. Sullivan, K. F. (2008) Fluorescent proteins, 1st ed., Academic Press, London; San Diego, CA.

    Google Scholar 

  5. Frommer, W., Davidson, M., and Campbell, R. (2009) Genetically encoded biosensors based on engineered fluorescent proteins., Chem Soc Rev 38, 2833–2841.

    Article  PubMed  CAS  Google Scholar 

  6. Sandison, J. (1928) Observations on growth of blood vessels as seen in transparent chamber introduced into rabbit’s ear, Am J Anat 41, 475–496.

    Article  Google Scholar 

  7. Ide, A., and Warren, S. (1939) Vascularization of the Brown Pearce rabbit epithelioma transplant as seen in the transparent ear chamber, Am J Roentgenol 42, 891–889.

    Google Scholar 

  8. Algire, G. (1939) An adaptation of the transparent chamber technique to the mouse, J Natl Cancer Inst 4.

    Google Scholar 

  9. Huang, Q., Shan, S., Braun, R. D., Lanzen, J., Anyrhambatla, G., Kong, G., Borelli, M., Corry, P., Dewhirst, M. W., and Li, C. Y. (1999) Noninvasive visualization of tumors in rodent dorsal skin window chambers, Nat Biotechnol 17, 1033–1035.

    Article  PubMed  CAS  Google Scholar 

  10. Moeller, B. J., Cao, Y., Li, C. Y., and Dewhirst, M. W. (2004) Radiation activates HIF-1 to regulate vascular radiosensitivity in tumors: role of reoxygenation, free radicals, and stress granules, Cancer Cell 5, 429–441.

    Article  PubMed  CAS  Google Scholar 

  11. Moeller, B. J., Dreher, M. R., Rabbani, Z. N., Schroeder, T., Cao, Y., Li, C. Y., and Dewhirst, M. W. (2005) Pleiotropic effects of HIF-1 blockade on tumor radiosensitivity, Cancer Cell 8, 99–110.

    Article  PubMed  CAS  Google Scholar 

  12. Dewhirst, M. W., Cao, Y., Li, C. Y., and Moeller, B. (2007) Exploring the role of HIF-1 in early angiogenesis and response to radiotherapy, Radiother Oncol 83, 249–255.

    Article  PubMed  CAS  Google Scholar 

  13. Fidler, I. J., Yano, S., Zhang, R. D., Fujimaki, T., and Bucana, C. D. (2002) The seed and soil hypothesis: vascularisation and brain metastases, Lancet Oncology. 3, 53–57.

    Article  PubMed  CAS  Google Scholar 

  14. Tsuzuki, Y., Carreira, C. M., Bockhorn, M., Xu, L., Jain, R. K., and Fukumura, D. (2001) Pancreas microenvironment promotes VEGF expression and tumor growth: novel window models for pancreatic tumor angiogenesis and microcirculation., Lab Invest 81, 1439–1451.

    Article  PubMed  CAS  Google Scholar 

  15. Hoffman, R. M. (1998–1999) Orthotopic transplant mouse models with green fluorescent protein-expressing cancer cells to visualize metastasis and angiogenesis, Cancer Metastasis Rev 17, 271–277.

    Article  Google Scholar 

  16. Yoneda, T., Michigami, T., Yi, B., Williams, P. J., Niewolna, M., and Hiraga, T. (2000) Actions of bisphosphonate on bone metastasis in animal models of breast carcinoma (Review), Cancer 88 (12 Suppl.), 2979–2988.

    Article  PubMed  CAS  Google Scholar 

  17. Skobe, M., Hawighorst, T., Jackson, D. G., Prevo, R., Janes, L., Velasco, P., Riccardi, L., Alitalo, K., Claffey, K., and M., D. (2001) Induction of tumor lymphangiogenesis by VEGF-C promotes breast cancer metastasis., Nature Med 7, 192–198.

    Google Scholar 

  18. Brandt, R., Wong, A. M., and Hynes, N. E. (2001) Mammary glands reconstituted with Neu/ErbB2 transformed HC11 cells provide a novel orthotopic tumor model for testing anti-cancer agents, Oncogene 20, 5459–5465.

    Article  PubMed  CAS  Google Scholar 

  19. Chatzistamou, L., Schally, A. V., Nagy, A., Armatis, P., Szepeshazi, K., and Halmos, G. (2000) Effective treatment of metastatic MDA-MB-435 human estrogen-independent breast carcinomas with a targeted cytotoxic analogue of luteinizing hormone-releasing hormone AN-207, Clinical Cancer Research. 6, 4158–4165.

    PubMed  CAS  Google Scholar 

  20. Nakagawa, H., Tsuta, K., Kiuchi, K., Senzaki, H., Tanaka, K., Hioki, K., and Tsubura, A. (2001) Growth inhibitory effects of diallyl disulfide on human breast cancer cell lines., Carcinogenesis 22, 891–897.

    Article  PubMed  CAS  Google Scholar 

  21. Lebedeva, S., Bagdasarova, S., Tyler, T., Mu, X., Wilson, D. R., and Gjerset, R. A. (2001) Tumor suppression and therapy sensitization of localized and metastatic breast cancer by adenovirus p53, Human Gene Ther 12, 763–772.

    Article  CAS  Google Scholar 

  22. Shan, S., Sorg, B., and Dewhirst, M. W. (2003) A novel rodent mammary window of orthotopic breast cancer for intravital microscopy, Microvascular Research 65, 109–117.

    Article  PubMed  Google Scholar 

  23. Boorman, G. A. (1990) Pathology of the Fischer rat: reference and atlas, Academic Press, San Diego.

    Google Scholar 

  24. Shan, S., Lockhart, A., Saito, W., Knapp, A., Laderoute, K., and Dewhirst, M. (2001) The novel tubulin-binding drug BTO-956 inhibits R3230AC mammary carcinoma growth and angiogenesis in Fischer 344 rats., Clin Cancer Res 7, 2590–2596.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge Katherine Hansen who assisted with the technical details of the surgical procedures. We would also like to acknowledge funding from the Department of Defense Breast Cancer Research Program (grant number W81XWH-07-1-0355) and the National Institutes of Health (grant number R01 - CA40355-26).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory M. Palmer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this protocol

Cite this protocol

Palmer, G.M., Fontanella, A.N., Shan, S., Dewhirst, M.W. (2012). High-Resolution In Vivo Imaging of Fluorescent Proteins Using Window Chamber Models. In: Hoffman, R. (eds) In Vivo Cellular Imaging Using Fluorescent Proteins. Methods in Molecular Biology, vol 872. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-797-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-797-2_3

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-796-5

  • Online ISBN: 978-1-61779-797-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics