Skip to main content

GFP-Transgenic Animals for In Vivo Imaging: Rats, Rabbits, and Pigs

  • Protocol
  • First Online:
In Vivo Cellular Imaging Using Fluorescent Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 872))

Abstract

Specifically, gene-encoded biological probes serve as stable and high-performance tools to visualize cellular fate in living animals. The rat, as with the mouse, has offered important animal models for biology and medical research, and has provided a wealth of physiological and pharmacological data. The larger-body animals, in comparison to the mouse have allowed the application of various physiological and surgical manipulations that may prove to have biological significance. We have further extended the techniques of genetic engineering to rats, rabbits, and pigs, and have created corresponding GFP-transgenic animals. The GFP-positive organs of these animals provide valuable sensors in preclinical settings for cell therapy and transplantation studies. In this chapter, we highlight expression profiles in these animal resources and describe examples of preclinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Weissleder, R. and Pittet, M. J. (2008) Imaging in the era of molecular oncology. Nature 452, 580–589.

    Article  PubMed  CAS  Google Scholar 

  2. Lippincott-Schwartz, J. and Patterson, G. H. (2003) Development and use of fluorescent protein markers in living cells. Science 300, 87–91.

    Article  PubMed  CAS  Google Scholar 

  3. Murakami, T. and Kobayashi, E. (2005) Color-engineered rats and luminescent LacZ imaging: a new platform to visualize biological processes. J Biomed Opt 10, 41204.

    Article  PubMed  Google Scholar 

  4. Hoffman, R.M. (2005) The multiple uses of fluorescent proteins to visualize cancer in vivo. Nat Rev Cancer 10, 796–806.

    Article  Google Scholar 

  5. Lyon, M. F., Rastan, S., and Brown, S. D. M. (eds) (1996) Genetic Variants and Strains of the Laboratory Mouse 3rd edn (Oxford University Press, Oxford).

    Google Scholar 

  6. Gondo, Y. (2008) Trends in large-scale mouse mutagenesis: from genetics to functional genomics. Nat Rev Genet 9, 803–10.

    Article  PubMed  CAS  Google Scholar 

  7. Daley, G. Q. (2010) Stem cells: roadmap to the clinic. J Clin Invest 120, 8–10.

    Article  PubMed  CAS  Google Scholar 

  8. Ronaghi, M., Erceg, S., Moreno-Manzano, V., and Stojkovic, M. (2010) Challenges of stem cell therapy for spinal cord injury: human embryonic stem cells, endogenous neural stem cells, or induced pluripotent stem cells? Stem Cells 28, 93–99.

    PubMed  Google Scholar 

  9. Takahashi, R., Kuramochi, T., Aoyagi, K., Hashimoto, S., Miyoshi, I., Kasai, N., Hakamata, Y., Kobayashi, E., and Ueda, M. (2007) Establishment and characterization of CAG/EGFP transgenic rabbit line. Transgenic Res 16, 115–120.

    Article  PubMed  CAS  Google Scholar 

  10. Kawarasaki, T., Uchiyama, K., Hirao, A., Azuma, S., Otake, M., Shibata, M., Tsuchiya, S., Enosawa, S., Takeuchi, K., Konno, K., Hakamata, Y., Yoshino, H., Wakai, T., Ookawara, S., Tanaka, H., Kobayashi, E., and Murakami, T. (2009) Profile of new green fluorescent protein transgenic Jinhua pigs as an imaging source. J Biomed Opt 14, 054017.

    Article  PubMed  Google Scholar 

  11. Zan, Y., Haag, J. D., Chen, K. S., Shepel, L. A., Wigington, D., Wang, Y. R., Hu, R., Lopez-Guajardo, C. C., Brose, H. L., Porter, K. I., Leonard, R. A., Hitt, A. A., Schommer, S. L., Elegbede, A. F., and Gould, M. N. (2003) Production of knockout rats using ENU mutagenesis and a yeast-based screening assay. Nat Biotechnol 21, 645–651.

    Article  PubMed  CAS  Google Scholar 

  12. Zhou, Q., Renard, J. P., Le Friec, G., Brochard, V., Beaujean, N., Cherifi, Y., Fraichard, A., and Cozzi, J. (2003) Generation of fertile cloned rats by regulating oocyte activation. Science 302, 1179.

    Article  PubMed  CAS  Google Scholar 

  13. Geurts, A. M., Cost, G. J., Freyvert, Y., Zeitler, B., Miller, J. C., Choi, V. M., Jenkins, S. S., Wood, A., Cui, X., Meng, X., Vincent, A., Lam, S., Michalkiewicz, M., Schilling, R., Foeckler, J., Kalloway, S., Weiler, H., Ménoret, S., Anegon, I., Davis, G. D., Zhang, L., Rebar, E. J., Gregory, P. D., Urnov, F. D., Jacob, H. J., and Buelow, R. (2009) Knockout rats via embryo microinjection of zinc-finger nucleases. Science 325, 433.

    Article  PubMed  CAS  Google Scholar 

  14. Yamaguchi, Y., Kubo, T., Murakami, T., Takahashi, M., Hakamata, Y., Kobayashi, E., Yoshida, S., Hosokawa, K., Yoshikawa, K., and Itami, S. (2005) Bone marrow cells differentiate into wound myofibroblasts and accelerate the healing of wounds with exposed bones when combined with an occlusive dressing. Br J Dermatol 152, 616–622.

    Article  PubMed  CAS  Google Scholar 

  15. Shimizu, T., Sekine, H., Yang, J., Isoi, Y., Yamato, M., Kikuchi, A. Kobayashi, E., and Okano, T. (2006) Polysurgery of cell sheet grafts overcomes diffusion limits to produce thick, vascularized myocardial tissues. FASEB J 20, 708–710.

    PubMed  CAS  Google Scholar 

  16. Francis, J. S., Olariu, A., Kobayashi, E., and Leone, P. (2007) GFP-transgenic Lewis rats as a cell source for oligodendrocyte replacement. Exp Neurol 205, 177–189.

    Article  PubMed  CAS  Google Scholar 

  17. Hakamata, Y., Tahara, K., Uchida, H., Sakuma, Y., Nakamura, M., Kume, A., Murakami, T., Takahashi, M., Takahashi, R., Hirabayashi, M, Ueda, M., Miyoshi, I., Kasai, N., and Kobayashi, E. (2001) Green fluorescent protein-transgenic rat: a tool for organ transplantation research. Biochem Res Commun 286, 779–785.

    Article  CAS  Google Scholar 

  18. Inoue, H., Ohsawa, I., Murakami, T., Kimura, A., Hakamata, Y., Sato, Y., Kaneko, T., Okada, T., Ozawa, K., Francis, J., Leone, P., and Kobayashi, E. (2005) Development of new inbred transgenic strains of rats with LacZ and GFP. Biochem Biophys Res Commun 329, 289–296.

    Article  Google Scholar 

  19. Sekine, H., Shimizu, T., Yang, J., Kobayashi, E., and Okano, T. (2006) Pulsatile myocardial tubes fabricated with cell sheet engineering. Circulation 114(1 Suppl), I87–93.

    PubMed  Google Scholar 

  20. Sekine, H., Shimizu, T., Kosaka, S., Kobayashi, E., and Okano, T. (2006) Cardiomyocyte bridging between hearts and bioengineered myocardial tissues with mesenchymal transition of mesothelial cells. J Heart Lung Transplant 25, 324–332.

    Article  PubMed  Google Scholar 

  21. Sekine, H., Shimizu, T., Hobo, K., Sekiya, S., Yang, J., Yamato, M., Kurosawa, H., Kobayashi, E., and Okano, T. (2008) Endothelial cell coculture within tissue-engineered cardiomyocyte sheets enhances neovascularization and improves cardiac function of ischemic hearts. Circulation 118(14 Suppl), S145–52.

    Article  PubMed  CAS  Google Scholar 

  22. Miyashita, H., Hakamata, Y., Kobayashi, E., and Kobayashi, K. (2004) Characterization of hair follicles induced in implanted, cultured rat keratinocyte sheets. Exp Dermatol 13, 491–498.

    Article  PubMed  CAS  Google Scholar 

  23. Mothe, A. J., Kulbatski, I., van Bendegem, R. L., Lee, L., Kobayashi, E., Keating, A., and Tator, C. H. (2005) Analysis of green fluorescent protein expression in transgenic rats for tracking transplanted neural stem/progenitor cells. J Histochem Cytochem 53, 1215–1226.

    Article  PubMed  CAS  Google Scholar 

  24. Inoue, H., Murakami, T., Ajiki, T., Hara, M., Hoshino, Y., and Kobayashi, E. (2008) Bioimaging assessment and effect of skin wound healing using bone-marrow-derived mesenchymal stromal cells with the artificial dermis in diabetic rats. J Biomed Opt 13, 064036.

    Article  PubMed  Google Scholar 

  25. Ajiki, T., Takahashi, M., Inoue, S., Sakuma, Y., Oyama, S., Kaneko, T., Hakamata, Y., Murakami, T., Kume, A., Kariya, Y., Hoshino, Y., and Kobayashi, E. (2003) Generation of donor hematolymphoid cells after rat-limb composite grafting. Transplantation 75, 631–636.

    Article  PubMed  CAS  Google Scholar 

  26. Inoue, S., Tahara, K., Kaneko, T., Ajiki, T., Takeda, S., Sato, Y., Hakamata, Y., Murakami, T., Takahashi, M., Kaneko, M., and Kobayashi, E. (2004) Long-lasting donor passenger leukocytes after hepatic and intestinal transplantation in rats. Transpl Immunol 12, 123–131.

    Article  PubMed  CAS  Google Scholar 

  27. Sakuma, Y., Sato, Y., Inoue, S., Kaneko, T., Hakamata, Y., Takahashi, M., Murakami, T., and Kobayashi, E. (2004) Lympho-myeloid chimerism achieved by spleen graft of green fluorescent protein transgenic rat in a combined pancreas transplantation model. Transpl Immunol 12, 115–122.

    Article  PubMed  Google Scholar 

  28. Takeuchi, K., Sereemaspun, A., Inagaki, T., Hakamata, Y., Kaneko, T., Murakami, T., Takahashi, M., Kobayashi, E., and Ookawara, S. (2003) Morphologic characterization of green fluorescent protein in embryonic, neonatal, and adult transgenic rats. Anat Rec A Discov Mol Cell Evol Biol 274, 883–886.

    Article  PubMed  Google Scholar 

  29. Hara, M., Murakami, T., and Kobayashi, E. (2008) In vivo bioimaging using photogenic rats: fate of injected bone marrow-derived mesenchymal stromal cells. J Autoimmun 30, 163–171.

    Article  PubMed  Google Scholar 

  30. Horie, M., Sekiya, I., Muneta, T., Ichinose, S., Matsumoto, K., Saito, H., Murakami, T., and Kobayashi, E. (2009) Intra-articular Injected synovial stem cells differentiate into meniscal cells directly and promote meniscal regeneration without mobilization to distant organs in rat massive meniscal defect. Stem Cells 27, ­878–887.

    Article  PubMed  CAS  Google Scholar 

  31. Sato, Y., Igarashi, Y., Hakamata, Y., Murakami, T., Kaneko, T., Takahashi, M., Seo, N., and Kobayashi, E. (2003) Establishment of Alb-DsRed2 transgenic rat for liver regeneration research. Biochem Biophys Res Commun 311, 478–481.

    Article  PubMed  CAS  Google Scholar 

  32. Misawa, R., Ise, H., Takahashi, M., Morimoto, H., Kobayashi, E., Miyagawa, S., and Ikeda, U. (2006) Development of liver regenerative therapy using glycoside-modified bone marrow cells. Biochem Biophys Res Commun 342, 434–440.

    Article  PubMed  CAS  Google Scholar 

  33. Sato, Y., Endo, H., Ajiki, T., Hakamata, Y., Okada, T., Murakami, T., and Kobayashi, E. Establishment of Cre/LoxP recombination system in transgenic rats. Biochem Biophys Res Commun 319, 1197–1202.

    Google Scholar 

  34. Sato, Y., Ajiki, T., Inoue, S., Hakamata, Y., Murakami, T., Kaneko, T., Takahashi, M., and Kobayashi, E. (2003) A novel gene therapy to the graft organ by a rapid injection of naked DNA I: long-lasting gene expression in a rat model of limb transplantation. Transplantation 76, 1294–1298.

    Article  PubMed  CAS  Google Scholar 

  35. Niwa, H., Yamamura, K., and Miyazaki, J. (1991) Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene 108, 193–199.

    Article  PubMed  CAS  Google Scholar 

  36. Kimura, A., Ohmori, T., Ohkawa, R., Madoiwa, S., Mimuro, J., Murakami, T., Kobayashi, E., Hoshino, Y., Yatomi, Y., and Sakata, Y. (2007) Essential roles of sphingosine 1-phosphate/S1P1 receptor axis in the migration of neural stem cells toward a site of spinal cord injury. Stem Cells 25, 115–124.

    Article  PubMed  CAS  Google Scholar 

  37. Kimura, A., Ohmori, T., Kashiwakura, Y., Ohkawa, R., Madoiwa, S., Mimuro, J., Shimazaki, K., Hoshino, Y., Yatomi, Y., and Sakata, Y. (2008) Antagonism of sphingosine 1-phosphate receptor-2 enhances migration of neural progenitor cells toward an area of brain. Stroke 39, 3411–3417.

    Article  PubMed  CAS  Google Scholar 

  38. Karp, J. M. and Leng Teo, G. S. (2009) Mesenchymal stem cell homing: the devil is in the details. Cell Stem Cell 4, 206–216.

    Article  PubMed  CAS  Google Scholar 

  39. Salem, H. K. and Thiemermann, C. (2010) Mesenchymal stromal cells: current understanding and clinical status. Stem Cells 28, 585–596.

    PubMed  CAS  Google Scholar 

  40. Studeny, M., Marini, F. C., Champlin, R. E., Zompetta, C., Fidler, I. J., and Andreeff, M. (2002) Bone marrow-derived mesenchymal stem cells as vehicles for interferon-beta delivery into tumors. Cancer Res 62, 3603–3608.

    PubMed  CAS  Google Scholar 

  41. Studeny, M., Marini, F. C., Dembinski, J. L., Zompetta, C., Cabreira-Hansen, M., Bekele, B. N., Champlin, R. E., and Andreeff, M (2004) Mesenchymal stem cells: Potential precursors for tumor stroma and targeted-delivery vehicles for anticancer agents. J Natl Cancer Inst 96, 1593–1603.

    Article  PubMed  CAS  Google Scholar 

  42. Wang, H. J., Lin, A. X., Zhang, Z. C., and Chen, Y. F. (2001) Expression of porcine growth hormone gene in transgenic rabbits as reported by green fluorescent protein. Anim Biotechnol 12, 101–110.

    Article  PubMed  CAS  Google Scholar 

  43. Chesne, P., Adenot, P. G., Viglietta, C., Baratte, M., Boulanger, L., and Renard, J. P. (2002) Cloned rabbits produced by nuclear transfer from adult somatic cells. Nat Biotechnol 20, 366–369.

    Article  PubMed  CAS  Google Scholar 

  44. Chrenek, P., Vasicek, D., Makarevich, A. V., Jurcik, R., Suvegova, K., Parkanyi, V., Bauer, M., Rafay, J., Batorova, A., and Paleyanda, R. K. (2005) Increased transgene integration efficiency upon microinjection of DNA into both pronuclei of rabbit embryos. Transgenic Res 14, 417–428.

    Article  PubMed  CAS  Google Scholar 

  45. Al-Gubory, K. H. and Houdebine, L. M. (2006) In vivo imaging of green fluorescent protein-expressing cells in transgenic animals using fibred confocal fluorescence microscopy. Eur J Cell Biol 85, 837–845.

    Article  PubMed  CAS  Google Scholar 

  46. Okabe, M., Ikawa, M., Kominami, K., Nakanishi, T., and Nishimune, Y. (1997) ‘Green mice’ as a source of ubiquitous green cells. FEBS Lett 407, 313–319.

    Article  PubMed  CAS  Google Scholar 

  47. Hunter, C. V., Tiley, L. S., and Sang, H. M. (2005) Developments in transgenic technology: applications for medicine. Trends Mol Med 11, 293–298.

    Article  PubMed  CAS  Google Scholar 

  48. Houdebine, L. M. (2007) Transgenic animal models in biomedical research. Methods Mol Biol 360, 163–202.

    PubMed  CAS  Google Scholar 

  49. Niemann, H., Tian, X. C., King, W. A., and Lee, R. S. (2008) Epigenetic reprogramming in embryonic and foetal development upon somatic cell nuclear transfer cloning. Reproduction 135, 151–163.

    Article  PubMed  CAS  Google Scholar 

  50. Tesson, L., Cozzi, J., Menoret, S., Remy, S., Usal, C., Fraichard, A., and Anegon, I. (2005) Transgenic modification of the rat genome. Transgenic Res 14, 531–546.

    Article  PubMed  CAS  Google Scholar 

  51. Dann, C. T. and Garbers, D. L. (2008) Production of knockdown rats by lentiviral transduction of embryos with short hairpin RNA transgenes. Methods Mol Biol 450, 193–209.

    Article  PubMed  CAS  Google Scholar 

  52. Chen, G., Qian, H., Starzl, T., Sun, H., Garcia, B., Wang, X., Wise, Y., Liu, Y., Xiang, Y., Copeman, L., Liu, W., Jevnikar, A., Wall, W., Cooper, D. K., Murase, N., Dai, Y., Wang, W., Xiong, Y., White, D. J., and Zhong, R. (2005) Acute rejection is associated with antibodies to non-Gal antigens in baboons using Gal-knockout pig kidneys. Nat Med 11, 1295–1298.

    Article  PubMed  CAS  Google Scholar 

  53. Kuwaki, K., Tseng, Y. L., Dor, F. J., Shimizu, A., Houser, S. L., Sanderson, T. M., Lancos, C. J., Prabharasuth, D. D., Cheng, J., Moran, K., Hisashi, Y., Mueller, N., Yamada, K., Greenstein, J. L., Hawley, R. J., Patience, C., Awwad, M., Fishman, J. A., Robson, S. C., Schuurman, H. J., Sachs, D. H., and Cooper, D. K. (2005) Heart transplantation in baboons using alpha1,3-galactosyltransferase gene-knockout pigs as donors: initial experience. Nat Med 11, 29–31.

    Article  PubMed  CAS  Google Scholar 

  54. Yamada, K., Yazawa, K., Shimizu, A., Iwanaga, T., Hisashi, Y., Nuhn, M., O’Malley, P., Nobori, S., Vagefi, P. A., Patience, C., Fishman, J., Cooper, D. K., Hawley, R. J., Greenstein, J., Schuurman, H. J., Awwad, M., Sykes, M., and Sachs, D. H. (2005) Marked prolongation of porcine renal xenograft survival in baboons through the use of alpha1,3-galactosyltransferase gene-knockout donors and the ­cotransplantation of vascularized thymic tissue. Nat Med 11, 32–34.

    Article  PubMed  CAS  Google Scholar 

  55. Brunetti, D., Perota, A., Lagutina, I., Colleoni, S., Duchi, R., Calabrese, F., Seveso, M., Cozzi, E., Lazzari, G., Lucchini, F., and Galli, C. (2008) Transgene expression of green fluorescent protein and germ line transmission in cloned pigs derived from in vitro transfected adult fibroblasts. Cloning Stem Cells 10, 409–420.

    Article  PubMed  CAS  Google Scholar 

  56. Takahashi, M., Hakamata, Y., Murakami, T., Takeda, S., Kaneko, T., Takeuchi, K., Takahashi, R., Ueda, M., and Kobayashi, E. (2003) Establishment of lacZ-transgenic rats: a tool for regenerative research in myocardium. Biochem Biophys Res Commun 305, 904–908.

    Article  PubMed  CAS  Google Scholar 

  57. Hakamata, Y., Murakami, T., and Kobayashi, E. (2006) “Firefly rats” as an organ/cellular source for long-term in vivo bioluminescent imaging. Transplantation 81, 1179–1184.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Drs. Yoji Hakamata (Nippon Veterinary and Life Science University, Tokyo, Japan) and Masafumi Takahashi (Jichi Medical University, Tochigi, Japan) for contribution to the transgenic rat project, Dr. Tatsuo Kawarasaki (Tokai University, Kumamoto, Japan) for generation of the GFP-transgenic pig, and Drs. Masatsugu Ueda and Ri-ichi Takahashi for creation of the transgenic rat and rabbit (PhoenixBio Co., Ltd., Tochigi, Japan). This study was supported by a research grant from the “Strategic Research Platform” Project for Private Universities: matching fund subsidy from the Ministry of Education, Culture, Sports, Science, and Technology of Japan, and by a grant from the Health and Labor Science Research Grants from the Ministry of Health, Labor, and Welfare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eiji Kobayashi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this protocol

Cite this protocol

Murakami, T., Kobayashi, E. (2012). GFP-Transgenic Animals for In Vivo Imaging: Rats, Rabbits, and Pigs. In: Hoffman, R. (eds) In Vivo Cellular Imaging Using Fluorescent Proteins. Methods in Molecular Biology, vol 872. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-797-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-797-2_12

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-796-5

  • Online ISBN: 978-1-61779-797-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics