Skip to main content

Overview on DMD Exon Skipping

  • Protocol
  • First Online:
Exon Skipping

Part of the book series: Methods in Molecular Biology ((MIMB,volume 867))

Abstract

Antisense-mediated exon skipping to restore the disrupted dystrophin reading frame is currently in clinical trials for Duchenne muscular dystrophy. This chapter describes the rationale of this approach and gives an overview of in vitro and in vivo experiments with antisense oligonucleotides and antisense genes. Finally, an overview of clinical trials is given and outstanding questions and hurdles are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aartsma-Rus A, van Ommen GJ (2007) Antisense-mediated exon skipping: a versatile tool with therapeutic and research applications. RNA 13:1609–1624

    Article  PubMed  CAS  Google Scholar 

  2. van Ommen GJ, van Deutekom J, Aartsma-Rus A (2008) The therapeutic potential of antisense-mediated exon skipping. Curr Opin Mol Ther 10:140–149

    PubMed  Google Scholar 

  3. Aartsma-Rus A (2010) Antisense-mediated modulation of splicing: therapeutic implications for duchenne muscular dystrophy. RNA Biol 7(4):453–461

    Article  PubMed  CAS  Google Scholar 

  4. Emery AE (2002) The muscular dystrophies. Lancet 359:687–695

    Article  PubMed  CAS  Google Scholar 

  5. Hoffman EP, Brown RH Jr, Kunkel LM (1987) Dystrophin: the protein product of the Duchenne muscular dystrophy locus. Cell 51:919–928

    Article  PubMed  CAS  Google Scholar 

  6. Monaco AP, Bertelson CJ, Liechti-Gallati S et al (1988) An explanation for the phenotypic differences between patients bearing partial deletions of the DMD locus. Genomics 2:90–95

    Article  PubMed  CAS  Google Scholar 

  7. Blake DJ, Weir A, Newey SE et al (2002) Function and genetics of dystrophin and ­dystrophin-related proteins in muscle. Physiol Rev 82:291–329

    PubMed  CAS  Google Scholar 

  8. Koenig M, Kunkel LM (1990) Detailed analysis of the repeat domain of dystrophin reveals four potential hinge segments that may confer flexibility. J Biol Chem 265:4560–4566

    PubMed  CAS  Google Scholar 

  9. Aartsma-Rus A, van Deutekom JC, Fokkema IF et al (2006) Entries in the Leiden Duchenne muscular dystrophy mutation database: an overview of mutation types and paradoxical cases that confirm the reading-frame rule. Muscle Nerve 34:135–144

    Article  PubMed  CAS  Google Scholar 

  10. Aartsma-Rus A, Kaman WE, Bremmer-Bout M et al (2004) Comparative analysis of antisense oligonucleotide analogs for tageted DMD exon 46 skipping in muscle cells. Gene Therapy 11:1391–1398

    Article  PubMed  CAS  Google Scholar 

  11. De Clercq E, Eckstein F, Sternbach H et al (1969) Interferon induction by and ribonuclease sensitivity of thiophosphate-substituted polyribonucleotides. Antimicrob Agents Chemother (Bethesda) 9:187–191

    Google Scholar 

  12. Crooke ST (2000) Progress in antisense technology: the end of the beginning. Methods Enzymol 313:3–45

    Article  PubMed  CAS  Google Scholar 

  13. Sproat BS, Lamond AI, Beijer B et al (1989) Highly efficient chemical synthesis of 2’-O-methyloligoribonucleotides and tetrabiotinylated derivatives; novel probes that are resistant to degradation by RNA or DNA specific nucleases. Nucleic Acids Res 17:3373–3386

    Article  PubMed  CAS  Google Scholar 

  14. Summerton J, Weller D (1997) Morpholino antisense oligomers: design, preparation, and properties. Antisense Nucleic Acid Drug Dev 7:187–195

    Article  PubMed  CAS  Google Scholar 

  15. Obika S, Nanbu D, Hari Y et al (1998) Stability and structural features of the duplexes containing nucleoside analogues with fixed N-type conformation, 2’-O,4’-C-methyleneribonucleosides. Tetrahedron Lett 39:5401–5404

    Article  CAS  Google Scholar 

  16. Larsen HJ, Bentin T, Nielsen PE (1999) Antisense properties of peptide nucleic acid. Biochim Biophys Acta 1489:159–166

    PubMed  CAS  Google Scholar 

  17. Takeshima Y, Nishio H, Sakamoto H et al (1995) Modulation of in vitro splicing of the upstream intron by modifying an intra-exon sequence which is deleted from the dystrophin gene in dystrophin Kobe. J Clin Invest 95:515–520

    Article  PubMed  CAS  Google Scholar 

  18. Matsuo M, Masumura T, Nishio H et al (1991) Exon skipping during splicing of dystrophin mRNA precursor due to an intraexon deletion in the dystrophin gene of Duchenne muscular dystrophy kobe. J Clin Invest 87:2127–2131

    Article  PubMed  CAS  Google Scholar 

  19. Takeshima Y, Wada H, Yagi M et al (2001) Oligonucleotides against a splicing enhancer sequence led to dystrophin production in muscle cells from a Duchenne muscular dystrophy patient. Brain Dev 23:788–790

    Article  PubMed  CAS  Google Scholar 

  20. van Deutekom JC, Bremmer-Bout M, Janson AA et al (2001) Antisense-induced exon skipping restores dystrophin expression in DMD patient derived muscle cells. Hum Mol Genet 10:1547–1554

    Article  PubMed  Google Scholar 

  21. Wilton SD, Lloyd F, Carville K et al (1999) Specific removal of the nonsense mutation from the mdx dystrophin mRNA using antisense oligonucleotides. Neuromuscul Disord 9:330–338

    Article  PubMed  CAS  Google Scholar 

  22. Aartsma-Rus A, Janson AA, Kaman WE et al (2003) Therapeutic antisense-induced exon skipping in cultured muscle cells from six different DMD patients. Hum Mol Genet 12:907–914

    Article  PubMed  CAS  Google Scholar 

  23. Aartsma-Rus A, Janson AA, Kaman WE et al (2004) Antisense-induced multiexon skipping for duchenne muscular dystrophy makes more sense. Am J Hum Genet 74:83–92

    Article  PubMed  CAS  Google Scholar 

  24. Arechavala-Gomeza V, Graham IR, Popplewell LJ et al (2007) Comparative analysis of antisense oligonucleotide sequences for targeted skipping of exon 51 during dystrophin pre-mRNA splicing in human muscle. Hum Gene Ther 18:798–810

    Article  PubMed  CAS  Google Scholar 

  25. Spitali P, Rimessi P, Fabris M et al (2009) Exon skipping-mediated dystrophin reading frame restoration for small mutations. Hum Mutat 30:1527–1534

    Article  PubMed  CAS  Google Scholar 

  26. Aartsma-Rus A, Janson AA, van Ommen GJ et al (2007) Antisense-induced exon skipping for duplications in Duchenne muscular dystrophy. BMC Med Genet 8:43

    Article  PubMed  Google Scholar 

  27. Gurvich OL, Tuohy TM, Howard MT et al (2008) DMD pseudoexon mutations: splicing efficiency, phenotype, and potential therapy. Ann Neurol 63:81–89

    Article  PubMed  CAS  Google Scholar 

  28. Madden HR, Fletcher S, Davis MR et al (2008) Characterization of a complex Duchenne muscular dystrophy-causing dystrophin gene inversion and restoration of the reading frame by induced exon skipping. Hum Mutat 30:22–28

    Article  Google Scholar 

  29. McClorey G, Moulton HM, Iversen PL et al (2006) Antisense oligonucleotide-induced exon skipping restores dystrophin expression in vitro in a canine model of DMD. Gene Ther 13:1373–1381

    Article  PubMed  CAS  Google Scholar 

  30. Aartsma-Rus A, Fokkema I, Verschuuren J et al (2009) Theoretic applicability of antisense-mediated exon skipping for Duchenne muscular dystrophy mutations. Hum Mutat 30:293–299

    Article  PubMed  Google Scholar 

  31. Beroud C, Tuffery-Giraud S, Matsuo M et al (2007) Multiexon skipping leading to an artificial DMD protein lacking amino acids from exons 45 through 55 could rescue up to 63% of patients with Duchenne muscular dystrophy. Hum Mutat 28:196–202

    Article  PubMed  CAS  Google Scholar 

  32. van Vliet L, De Winter CL, van Deutekom JC et al (2008) Assessment of the feasibility of exon 45-55 multiexon skipping for duchenne muscular dystrophy. BMC Med Genet 9:105

    Article  PubMed  Google Scholar 

  33. Aartsma-Rus A, Kaman WE, Weij R et al (2006) Exploring the frontiers of therapeutic exon skipping for duchenne muscular dystrophy by double targeting within one or multiple exons. Mol Ther 14:401–407

    Article  PubMed  CAS  Google Scholar 

  34. Tennyson CN, Klamut HJ, Worton RG (1995) The human dystrophin gene requires 16 hours to be transcribed and is cotranscriptionally spliced. Nat Genet 9:184–190

    Article  PubMed  CAS  Google Scholar 

  35. Gebski BL, Mann CJ, Fletcher S et al (2003) Morpholino antisense oligonucleotide induced dystrophin exon 23 skipping in mdx mouse muscle. Hum Mol Genet 12:1801–1811

    Article  PubMed  CAS  Google Scholar 

  36. Popplewell LJ, Trollet C, Dickson G et al (2009) Design of phosphorodiamidate morpholino oligomers (PMOs) for the induction of exon skipping of the human DMD gene. Mol Ther 17:554–561

    Article  PubMed  CAS  Google Scholar 

  37. Popplewell LJ, Adkin C, Arechavala-Gomeza V et al (2010) Comparative analysis of antisense oligonucleotide sequences targeting exon 53 of the human DMD gene: implications for future clinical trials. Neuromuscul Disord 20: 102–110

    Article  PubMed  Google Scholar 

  38. Wang Q, Yin H, Camelliti P et al (2010) In vitro evaluation of novel antisense oligonucleotides is predictive of in vivo exon skipping activity for Duchenne muscular dystrophy. J Gene Med 12:354–364

    Article  PubMed  Google Scholar 

  39. Spitali P, Heemskerk H, Vossen RH et al (2010) Accurate quantification of dystrophin mRNA and exon skipping levels in Duchenne muscular dystrophy. Lab Invest 90(9):1396–1402

    Article  PubMed  CAS  Google Scholar 

  40. Sicinski P, Geng Y, Ryder-Cook AS et al (1989) The molecular basis of muscular dystrophy in the mdx mouse: a point mutation. Science 244:1578–1580

    Article  PubMed  CAS  Google Scholar 

  41. Willmann R, Possekel S, Dubach-Powell J et al (2009) Mammalian animal models for Duchenne muscular dystrophy. Neuromuscul Disord 19:241–249

    Article  PubMed  Google Scholar 

  42. Deconinck AE, Rafael JA, Skinner JA et al (1997) Utrophin-dystrophin-deficient mice as a model for Duchenne muscular dystrophy. Cell 90:717–727

    Article  PubMed  CAS  Google Scholar 

  43. Zhou L, Rafael-Fortney JA, Huang P et al (2008) Haploinsufficiency of utrophin gene worsens skeletal muscle inflammation and fibrosis in mdx mice. J Neurol Sci 264:106–111

    Article  PubMed  CAS  Google Scholar 

  44. van Putten M., Kumar D., Hulsker M., et al (2012) Comparison of skeletal muscle pathology and motor function of dystrophin and utrophin deficient mouse strains. Neuromuscul Disord

    Google Scholar 

  45. ‘t Hoen PA, de Meijer EJ, Boer JM et al (2007) Generation and characterization of transgenic mice with the full-length human DMD gene. J Biol Chem 283:5899–5907

    Article  PubMed  Google Scholar 

  46. Bremmer-Bout M, Aartsma-Rus A, de Meijer EJ et al (2004) Targeted exon skipping in transgenic hDMD mice: a model for direct pre-clinical screening of human-specific antisense oligonucleotides. Mol Ther 10:232–240

    Article  PubMed  CAS  Google Scholar 

  47. Sharp NJ, Kornegay JN, Van Camp SD et al (1992) An error in dystrophin mRNA processing in golden retriever muscular dystrophy, an animal homologue of Duchenne muscular dystrophy. Genomics 13:115–121

    Article  PubMed  CAS  Google Scholar 

  48. Yokota T, Lu QL, Partridge T et al (2009) Efficacy of systemic morpholino exon-skipping in Duchenne dystrophy dogs. Ann Neurol 65:667–676

    Article  PubMed  Google Scholar 

  49. Walmsley GL, Arechavala-Gomeza V, Fernandez-Fuente M et al (2010) A duchenne muscular dystrophy gene hot spot mutation in dystrophin-deficient cavalier king charles spaniels is amenable to exon 51 skipping. PLoS One 5:e8647

    Article  PubMed  Google Scholar 

  50. Lu QL, Mann CJ, Lou F et al (2003) Functional amounts of dystrophin produced by skipping the mutated exon in the mdx dystrophic mouse. Nat Med 8:1009–1014

    Article  Google Scholar 

  51. Mann CJ, Honeyman K, McClorey G et al (2002) Improved antisense oligonucleotide induced exon skipping in the mdx mouse model of muscular dystrophy. J Gene Med 4:644–654

    Article  PubMed  CAS  Google Scholar 

  52. Heemskerk HA, De Winter CL, de Kimpe SJ et al (2009) In vivo comparison of 2’-O-methyl phosphorothioate and morpholino antisense oligonucleotides for Duchenne muscular ­dystrophy exon skipping. J Gene Med 11: 257–266

    Article  PubMed  CAS  Google Scholar 

  53. Yin H, Lu Q, Wood M (2008) Effective exon skipping and restoration of dystrophin expression by peptide nucleic acid antisense oligonucleotides in mdx mice. Mol Ther 16:38–45

    Article  PubMed  CAS  Google Scholar 

  54. Watanabe TA, Geary RS, Levin AA (2006) Plasma protein binding of an antisense oligonucleotide targeting human ICAM-1 (ISIS 2302). Oligonucleotides 16:169–180

    Article  PubMed  CAS  Google Scholar 

  55. Heemskerk H, de Winter C, van Kuik P et al (2010) Preclinical PK and PD studies on 2’-O-methyl-phosphorothioate RNA antisense oligonucleotides in the mdx mouse model. Mol Ther 18(6):1210–1217

    Article  PubMed  CAS  Google Scholar 

  56. Amantana A, Iversen PL (2005) Pharma­cokinetics and biodistribution of phosphorodiamidate morpholino antisense oligomers. Curr Opin Pharmacol 5:550–555

    Article  PubMed  CAS  Google Scholar 

  57. Heemskerk H, De Winter CL, van Ommen GJ et al (2009) Development of antisense-mediated exon skipping as a treatment for duchenne muscular dystrophy. Ann N Y Acad Sci 1175:71–79

    Article  PubMed  CAS  Google Scholar 

  58. Lu QL, Rabinowitz A, Chen YC et al (2005) Systemic delivery of antisense oligoribonucleotide restores dystrophin expression in body-wide skeletal muscles. Proc Natl Acad Sci U S A 102:198–203

    Article  PubMed  CAS  Google Scholar 

  59. Ferlini A, Sabatelli P, Fabris M et al (2010) Dystrophin restoration in skeletal, heart and skin arrector pili smooth muscle of mdx mice by ZM2 NP-AON complexes. Gene Ther 17:432–438

    Article  PubMed  CAS  Google Scholar 

  60. Alter J, Lou F, Rabinowitz A et al (2006) Systemic delivery of morpholino oligonucleotide restores dystrophin expression bodywide and improves dystrophic pathology. Nat Med 12:175–177

    Article  PubMed  CAS  Google Scholar 

  61. Fletcher S, Honeyman K, Fall AM et al (2006) Dystrophin expression in the mdx mouse after localised and systemic administration of a morpholino antisense oligonucleotide. J Gene Med 8:207–216

    Article  PubMed  CAS  Google Scholar 

  62. Fletcher S, Honeyman K, Fall AM et al (2007) Morpholino oligomer-mediated exon skipping averts the onset of dystrophic pathology in the mdx mouse. Mol Ther 15:1587–1592

    Article  PubMed  CAS  Google Scholar 

  63. Malerba A, Thorogood FC, Dickson G et al (2009) Dosing regimen has a significant impact on the efficiency of morpholino oligomer-induced exon skipping in mdx mice. Hum Gene Ther 20:955–965

    Article  PubMed  CAS  Google Scholar 

  64. Wu B, Lu P, Benrashid E et al (2010) Dose-dependent restoration of dystrophin expression in cardiac muscle of dystrophic mice by systemically delivered morpholino. Gene Ther 17:132–140

    Article  PubMed  CAS  Google Scholar 

  65. Jearawiriyapaisarn N, Moulton HM, Buckley B et al (2008) Sustained dystrophin expression induced by peptide-conjugated morpholino oligomers in the muscles of mdx mice. Mol Ther 16:1624–1629

    Article  PubMed  CAS  Google Scholar 

  66. Wu B, Moulton HM, Iversen PL et al (2008) Effective rescue of dystrophin improves cardiac function in dystrophin-deficient mice by a modified morpholino oligomer. Proc Natl Acad Sci U S A 105:14814–14819

    Article  PubMed  CAS  Google Scholar 

  67. Yin H, Moulton HM, Seow Y et al (2008) Cell-penetrating peptide-conjugated antisense oligonucleotides restore systemic muscle and cardiac dystrophin expression and function. Hum Mol Genet 17:3909–3918

    Article  PubMed  CAS  Google Scholar 

  68. Goyenvalle A, Babbs A, Powell D et al (2010) Prevention of dystrophic pathology in severely affected dystrophin/utrophin-deficient mice by morpholino-oligomer-mediated exon-skipping. Mol Ther 18:198–205

    Article  PubMed  CAS  Google Scholar 

  69. Moulton HM, Moulton JD (2010) Morpholinos and their peptide conjugates: therapeutic promise and challenge for Duchenne muscular dystrophy. Biochim Biophys Acta 1798(12):2296–2303

    Article  PubMed  CAS  Google Scholar 

  70. De Angelis FG, Sthandier O, Berarducci B et al (2002) Chimeric snRNA molecules carrying antisense sequences against the splice junctions of exon 51 of the dystrophin pre-mRNA induce exon skipping and restoration of a dystrophin synthesis in Delta 48-50 DMD cells. Proc Natl Acad Sci U S A 99:9456–9461

    Article  PubMed  Google Scholar 

  71. Denti MA, Rosa A, D’Antona G et al (2006) Body-wide gene therapy of Duchenne muscular dystrophy in the mdx mouse model. Proc Natl Acad Sci U S A 103:3758–3763

    Article  PubMed  CAS  Google Scholar 

  72. Denti MA, Incitti T, Sthandier O et al (2008) Long-term benefit of adeno-associated virus/antisense-mediated exon skipping in dystrophic mice. Hum Gene Ther 19:601–608

    Article  PubMed  CAS  Google Scholar 

  73. Goyenvalle A, Vulin A, Fougerousse F et al (2004) Rescue of dystrophic muscle through U7 snRNA-mediated exon skipping. Science 306:1796–1799

    Article  PubMed  CAS  Google Scholar 

  74. Goyenvalle A, Babbs A, van Ommen GJ et al (2009) Enhanced exon-skipping induced by U7 snRNA carrying a splicing silencer sequence: promising tool for DMD therapy. Mol Ther 17:1234–1240

    Article  PubMed  CAS  Google Scholar 

  75. Incitti T, De Angelis FG, Cazzella V et al (2010) Exon skipping and duchenne muscular dystrophy therapy: selection of the most active U1 snRNA antisense able to induce dystrophin exon 51 skipping. Mol Ther 18(9):1675–1682

    Article  PubMed  CAS  Google Scholar 

  76. van Deutekom JC, Janson AA, Ginjaar IB et al (2007) Local dystrophin restoration with antisense oligonucleotide PRO051. N Engl J Med 357:2677–2686

    Article  PubMed  Google Scholar 

  77. Kinali M, Arechavala-Gomeza V, Feng L et al (2009) Local restoration of dystrophin expression with the morpholino oligomer AVI-4658 in Duchenne muscular dystrophy: a single-blind, placebo-controlled, dose-escalation, proof-of-concept study. Lancet Neurol 8:918–928

    Article  PubMed  CAS  Google Scholar 

  78. Takeshima Y, Yagi M, Wada H et al (2006) Intravenous infusion of an antisense oligonucleotide results in exon skipping in muscle dystrophin mRNA of Duchenne muscular dystrophy. Pediatr Res 59:690–694

    Article  PubMed  CAS  Google Scholar 

  79. Pramono ZA, Takeshima Y, Alimsardjono H et al (1996) Induction of exon skipping of the dystrophin transcript in lymphoblastoid cells by transfecting an antisense oligodeoxynucleotide complementary to an exon recognition sequence. Biochem Biophys Res Commun 226:445–449

    Article  PubMed  CAS  Google Scholar 

  80. Goemans NM, Tulinius M, van den Akker JT et al (2011) Systemic administration of PRO051 in Duchenne’s muscular dystrophy. N Engl J Med 364:1513–1522

    Article  PubMed  CAS  Google Scholar 

  81. Cirak S, Arechavala-Gomeza V, Guglieri M et al (2011) Exon skipping and dystrophin restoration in patients with Duchenne muscular dystrophy after systemic phosphorodiamidate morpholino oligomer treatment: an open-label, phase 2, dose-escalation study. Lancet 378:595–605

    Article  PubMed  CAS  Google Scholar 

  82. Muntoni F (2010) The development of antisense oligonucleotide therapies for Duchenne muscular dystrophy: report on a TREAT-NMD workshop hosted by the European Medicines Agency (EMA), on September 25th 2009. Neuromuscul Disord 20:355–362

    Article  PubMed  CAS  Google Scholar 

  83. Alagaratnam S, Mertens BJ, Dalebout JC et al (2008) Serum protein profiling in mice: ­identification of Factor XIIIa as a potential ­biomarker for muscular dystrophy. Proteomics 8:1552–1563

    Article  PubMed  CAS  Google Scholar 

  84. Nadarajah VD, van Putten M, Chaouch A et al (2011) Serum matrix metalloproteinase-9 (MMP-9) as a biomarker for monitoring disease progression in duchenne muscular dystrophy (DMD). Neuromuscul Disord 21(8):569–578

    Article  PubMed  CAS  Google Scholar 

  85. Melis MA, Cau M, Muntoni F et al (1998) Elevation of serum creatine kinase as the only manifestation of an intragenic deletion of the dystrophin gene in three unrelated families. Eur J Paediatr Neurol 2:255–261

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The author receives funding from ZonMw (the Netherlands), the Dutch Duchenne Parent Project (the Netherlands), Spieren voor spieren (Prinses Beatrix Foundation, the Netherlands), and the European Union (LUMC is partner in the TREAT-NMD network of excellence (LSHM-CT-2006-036825) and the BIO-NMD project (HEALTH-F2-2009-241665)). The LUMC participates in the Center for Biomedical Genetics (the Netherlands) and the Center for Medical Systems Biology (the Netherlands).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annemieke Aartsma-Rus .

Editor information

Editors and Affiliations

Additional information

Conflict of Interest

The author reports being employed by LUMC and coinventor of patent applications for antisense sequences and the exon skipping technology. LUMC has licensed the rights to the patents on PRO051 exclusively to Prosensa Therapeutics. The inventors specified on the patents (including the author) are jointly entitled to a share of any future royalties paid to LUMC, should the therapy eventually be brought to the market.

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Aartsma-Rus, A. (2012). Overview on DMD Exon Skipping. In: Aartsma-Rus, A. (eds) Exon Skipping. Methods in Molecular Biology, vol 867. Humana Press. https://doi.org/10.1007/978-1-61779-767-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-767-5_7

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-766-8

  • Online ISBN: 978-1-61779-767-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics