Skip to main content

Extraction and Isolation of Phenolic Compounds

  • Protocol
  • First Online:
Natural Products Isolation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 864))

Abstract

Phenolic compounds constitute a major class of plant secondary metabolites that are widely distributed in the plant kingdom and show a large structural diversity. These compounds occur as aglycones or glycosides, as monomers or constituting highly polymerized structures, or as free or matrix-bound compounds. Furthermore, they are not uniformly distributed in the plant and their stability varies significantly. This greatly complicates their extraction and isolation processes, which means that a single standardized procedure cannot be recommended for all phenolics and/or plant materials; procedures have to be optimized depending on the nature of the sample and the target analytes, and also on the object of the study. In this chapter, the main techniques for sample preparation, and extraction and isolation of phenolic compounds have been reviewed—from classical solvent extraction procedures to more modern approaches, such as the use of molecularly imprinted polymers or counter-current chromatography.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Quideau S, Deffieux D, Douat-Casassus C, Pouysegu L (2011) Plant polyphenols: chemical properties, biological activities and synthesis. Angew Chem Int Ed 50:586–621

    Article  CAS  Google Scholar 

  2. Robards K (2003) Strategies for the determination of bioactive phenols in plants, fruit and vegetables. J Chromatog A 1000:657–691

    Article  CAS  Google Scholar 

  3. Luthria DL (2006) Significance of sample preparation in developing analytical methodologies for accurate estimation of bioactive compounds in functional foods. J Sci Food Agric 86:2266–2272

    Article  CAS  Google Scholar 

  4. Vallejo F, Tomas-Barberan F, Garcia-Viguera C (2003) Health promoting compounds in broccoli as influenced by refrigerated transport and retail sale period. J Agric Food Chem 51:3029–3034

    Article  PubMed  CAS  Google Scholar 

  5. Dai J, Mumper RJ (2010) Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules 15:7313–7352

    Article  PubMed  CAS  Google Scholar 

  6. Keinanen M, Julkunen-Tiitto R (1996) Effect of sample preparation method on birch (Betula pendula Roth) leaf phenolics. J Agric Food Chem 44:2724–2727

    Article  CAS  Google Scholar 

  7. Santos-Buelga C, Gonzalez-Manzano S, Dueñas M, Gonzalez-Paramas AM (2011) Analysis and characterization of flavonoid metabolites. In: Cheynier V, Quideau s (eds) Recent advances in polyphenols research, vol III. Wiley-Blackwell, Oxford, UK

    Google Scholar 

  8. Andreasen MF, Christensen LP, Meyer AS et al (1999) Release of hydroxycinnamic and hydroxybenzoic acids in rye by commercial plant cell wall degrading enzyme preparations. J Sci Food Agric 79:411–1413

    Article  CAS  Google Scholar 

  9. Bartolomé B, Gomez-Cordoves C (1999) Barley spent grain: release of hydroxycinnamic acids (ferulic and p-coumaric acids) by commercial enzyme preparations. J Sci Food Agric 79:435–439

    Article  Google Scholar 

  10. Yu J, Vasanthan T, Temelli F (2001) Analysis of phenolic acids in barley by high-performance liquid chromatography. J Agric Food Chem 49:4352–4358

    Article  PubMed  CAS  Google Scholar 

  11. Mattila P, Kumpulainen J (2002) Determination of free and total phenolic acids in plant-derived foods by HPLC with diode-array detection. J Agric Food Chem 50:3660–3667

    Article  PubMed  CAS  Google Scholar 

  12. Ross KA, Beta T, Arntfield SD (2009) A comparative study on the phenolic acids identified and quantified in dry beans using HPLC as affected by different extraction and hydrolysis methods. Food Chem 113:336–344

    Article  CAS  Google Scholar 

  13. Luthria DL, Pastor-Corrales MA (2006) Phenolic acids content of 15 dry edible bean (Phaseolus vulgaris L.) varieties. J Food Compos Anal 19:205–211

    Article  CAS  Google Scholar 

  14. Rivas-Gonzalo JC (2003) Analysis of anthocyanins. In: Santos-Buelga C, Williamson G (eds) Methods in polyphenol analysis. The Royal Society of Chemistry, Cambridge, pp 338–358

    Google Scholar 

  15. Krygier K, Sosulski F, Hogge L (1982) Free, esterified, and insoluble-bound phenolic acids. 1. Extraction and purification procedure. J Agric Food Chem 30:330–334

    Article  CAS  Google Scholar 

  16. Sosulski F, Krygier K, Hogge L (1982) Free, esterified, and insoluble-bound phenolic acids. 3. Composition of phenolic acids in cereal and potato flours. J Agric Food Chem 30:337–340

    Article  CAS  Google Scholar 

  17. Tomás-Barberán FA, Gil-Izquierdo A, Ferreres F, Gil MI (2003) Analysis and purification of flavanones, chalcones and dihydrochalcones. In: Santos-Buelga C, Williamson G (eds) Methods in polyphenol analysis. The Royal Society of Chemistry, Cambridge, pp 359–371

    Google Scholar 

  18. Escribano-Bailon MT, Santos-Buelga C (2003) Polyphenol extraction from foods. In: Santos-Buelga C, Williamson G (eds) Methods in polyphenol analysis. The Royal Society of Chemistry, Cambridge, pp 1–16

    Google Scholar 

  19. Luque de Castro MD, Garcia-Ayuso LE (1998) Soxhlet extraction of solid materials: an outdated technique with a promising innovative future. Anal Chim Acta 369:1–10

    Article  CAS  Google Scholar 

  20. Santos-Buelga C, García-Viguera C, Tomás-Barberán FA (2003) On-line identification of flavonoids by HPLC coupled to diode array detection. In: Santos-Buelga C, Williamson G (eds) Methods in polyphenol analysis. The Royal Society of Chemistry, Cambridge, pp 92–124

    Google Scholar 

  21. de Rijke E, Out P, Wilfried MA et al (2006) Analytical separation and detection methods for flavonoids. J Chromatogr A 1112:31–63

    Article  PubMed  CAS  Google Scholar 

  22. Naczk M, Shahidi F (2004) Extraction and analysis of phenolics in food. J Chromatogr A 1054:95–111

    PubMed  CAS  Google Scholar 

  23. Naczk M, Shahidi F, Sullivan A (1992) Recovery of rapeseed tannins by various solvent systems. Food Chem 45:51–54

    Article  CAS  Google Scholar 

  24. Antolovich M, Prenzler P, Robards K, Ryan D (2000) Sample preparation in the determination of phenolic compounds in fruits. Analyst 125:989–1009

    Article  CAS  Google Scholar 

  25. King GA, Sweeny JC, Radford T, Iacobucci GA (1979) The ascorbic acid/O2 degradation of anthocyanidin. Bull Liaison Groupe Polyphenols 9:121–128

    Google Scholar 

  26. Bradshaw MP, Prenzler PD, Scollary GR (2001) Ascorbic acid-induced browning of (+)-catechin in a model wine system. J Agric Food Chem 49:934–939

    Article  PubMed  CAS  Google Scholar 

  27. Luque-Garcia JL, Luque de Castro MD (2004) Ultrasound-assisted Soxhlet extraction: an expeditive approach for solid sample treatment. Application to the extraction of total fat from oleaginous seeds. J Chromatogr A 1034:237–242

    Article  PubMed  CAS  Google Scholar 

  28. Kataoka H (2010) New trends in sample preparation for analysis of plant-derived medicines. Curr Organ Chem 14:1698–1713

    Article  CAS  Google Scholar 

  29. Priego-Capote F, Luque de Castro MD (2007) Ultrasound in analytical chemistry. Anal Bioanal Chem 387:249–257

    Article  PubMed  CAS  Google Scholar 

  30. Ma YQ, Chen JC, Liu DH et al (2009) Simultaneous extraction of phenolic compounds of citrus peel extracts: Effect of ultrasound. Ultrason Sonochem 16:57–62

    Article  PubMed  CAS  Google Scholar 

  31. Ma YQ, Ye XQ, Hao YB et al (2008) Ultrasound-assisted extraction of hesperidin from Penggan (Citrus reticulata) peel. Ultrason Sonochem 15:227–232

    Article  PubMed  CAS  Google Scholar 

  32. Adam M, Dobias P, Eisner A et al (2009) Extraction of antioxidants from plants using ultrasonic methods and their antioxidant capacity. J Sep Sci 32:288–294

    Article  PubMed  CAS  Google Scholar 

  33. Chukwumah YC, Walker LT, Verghese M et al (2009) Effect of frequency and duration of ultrasonication on the extraction efficiency of selected isoflavones and trans-resveratrol from peanuts (Arachis hypogaea). Ultrason Sonochem 16:293–299

    Article  PubMed  CAS  Google Scholar 

  34. Khan MK, Abert-Vian M, Fabiano-Tixier AS et al (2010) Ultrasound-assisted extraction of polyphenols (flavanone glycosides) from orange (Citrus sinensis L.) peel. Food Chem 119:851–858

    Article  CAS  Google Scholar 

  35. Wang J, Su BG, Cao YP et al (2008) Optimisation of ultrasound-assisted extraction of phenolic compounds from wheat bran. Food Chem 106:804–810

    Article  CAS  Google Scholar 

  36. Ghafoor K, Choi YH, Jeon JY, Jo IH (2009) Optimization of ultrasound-assisted extraction of phenolic compounds, antioxidants, and anthocyanins from grape (Vitis vinifera) seeds. J Agric Food Chem 57:4988–4994

    Article  PubMed  CAS  Google Scholar 

  37. Rostagno MA, Palma M, Barroso CG (2007) Ultrasound-assisted extraction of isoflavones from soy beverages blended with fruit juices. Anal Chim Acta 597:265–272

    Article  PubMed  CAS  Google Scholar 

  38. Jerman T, Trebse P, Vodopivec BM (2010) Ultrasound-assisted solid liquid extraction (USLE) of olive fruit (Olea europaea) phenolic compounds. Food Chem 123:175–182

    Article  CAS  Google Scholar 

  39. Staneva J, Todorova M, Neykov N, Evstatieva L (2009) Ultrasonically assisted extraction of total phenols and flavonoids from Rhodiola rosea. Nat Prod Comm 4:935–938

    CAS  Google Scholar 

  40. Luque de Castro MD, Priego-Capote F (2007) Ultrasound assistance to liquid–liquid extraction: a debatable analytical tool. Anal Chim Acta 583:2–9

    Article  PubMed  CAS  Google Scholar 

  41. Wang LJ, Weller CL (2006) Recent advances in extraction of nutraceuticals from plants. Trends Food Sci Technol 17:300–312

    Article  CAS  Google Scholar 

  42. Kaufmann B, Christen P (2002) Recent extraction techniques for natural products: microwave-assisted extraction and pressurised solvent extraction. Phytochem Anal 13:105–113

    Article  PubMed  CAS  Google Scholar 

  43. Eskilsson CS, Bjorklund E (2000) Analytical-scale microwave-assisted extraction. J Chromatogr 902:227–250

    Article  CAS  Google Scholar 

  44. Pérez-Serradilla JA, Japon-Lujan R, Luque de Castro MD (2007) Simultaneous microwave-assisted solid–liquid extraction of polar and nonpolar compounds from alperujo. Anal Chim Acta 602:82–88

    Article  PubMed  CAS  Google Scholar 

  45. Pérez-Serradilla JA, Luque de Castro MD (2010) Microwave-assisted extraction of phenolic compounds from wine lees and spray-drying of the extract. Food Chem 124:1652–1659

    Article  CAS  Google Scholar 

  46. Proestos C, Komaitis M (2008) Application of microwave-assisted extraction to the fast extraction of plant phenolic compounds. LWT- Food Sci Technol 41:652–659

    Article  CAS  Google Scholar 

  47. Xiao WH, Han LJ, Shi B (2008) Microwave-assisted extraction of flavonoids from Radix Astragali. Sep Purif Technol 62:614–618

    Article  CAS  Google Scholar 

  48. Bai X, Yue TL, Yuan YH et al (2010) Optimization of microwave-assisted extraction of polyphenols from apple pomace using response surface methodology and HPLC analysis. J Sep Sci 33:3751–3758

    Article  PubMed  CAS  Google Scholar 

  49. Ballard TS, Mallikarjunan P, Zhou K, O’Keefe S (2010) Microwave-assisted extraction of phenolic antioxidant compounds from peanut skins. Food Chem 120:1185–1192

    Article  CAS  Google Scholar 

  50. Gallo M, Ferracane R, Graziani G et al (2010) Microwave assisted extraction of phenolic compounds from four different ápices. Molecules 15:6365–6374

    Article  PubMed  CAS  Google Scholar 

  51. Terigar BG, Balasubranian S, Boldor D et al (2010) Continuous microwave-assisted isoflavone extraction system: design and performance evaluation. Bioresouce Technol 101:2466–2471

    Article  CAS  Google Scholar 

  52. Du FY, Xiao XH, Li GK (2007) Application of ionic liquids in the microwave-assisted extraction of trans-resveratrol from Rhizma Polygoni Cuspidati. J Chromatogr A 1140:56–62

    Article  PubMed  CAS  Google Scholar 

  53. Du FY, Xiao XH, Luo XJ et al (2009) Application of ionic liquids in the microwave-assisted extraction of polyphenolic compounds from medicinal plants. Talanta 78:1177–1184

    Article  PubMed  CAS  Google Scholar 

  54. Liazid A, Palma M, Brigui J, Barroso CG (2007) Investigation on phenolic compounds stability during microwave-assisted extraction. J Chromatogr A 1140:29–34

    Article  PubMed  CAS  Google Scholar 

  55. Carabias-Martinez R, Rodriguez-Gonzalo E, Revilla-Ruiz P, Hernandez-Mendez J (2005) Pressurized liquid extraction in the analysis of food and biological samples. J Chromatogr A 1089:1–17

    Article  PubMed  CAS  Google Scholar 

  56. Casazza AA, Aliakbarian B, Mantenga S et al (2010) Extraction of phenolics from Vitis vinifera wastes using non-conventional techniques. J Food Eng 100:50–55

    Article  CAS  Google Scholar 

  57. Soltoft M, Christensen JH, Nielsen J et al (2009) Pressurised liquid extraction of flavonoids in onions. Method development and validation. Talanta 80:269–278

    Article  PubMed  CAS  Google Scholar 

  58. Zgórka G (2009) Pressurized liquid extraction versus other extraction techniques in micropreparative isolation of pharmacologically active isoflavones from Trifolium L. species. Talanta 79:46–53

    Article  PubMed  CAS  Google Scholar 

  59. Dobias P, Pavlikova P, Adam M et al (2010) Comparison of pressurised fluid and ultrasonic extraction methods for analysis of plant antioxidants and their antioxidant capacity. Cent Eur J Chem 8:87–95

    Article  CAS  Google Scholar 

  60. Palma M, Pineiro Z, Barroso CG (2001) Stability of phenolic compounds during extraction with superheated solvents. J Chromatogr A 921:169–174

    Article  PubMed  CAS  Google Scholar 

  61. Wijngaard H, Brunton N (2009) The optimization of extraction of antioxidants from apple pomace by pressurized liquids. J Agric Food Chem 57:10625–10631

    Article  PubMed  CAS  Google Scholar 

  62. Howard L, Pandjaitan N (2008) Pressurized liquid extraction of flavonoids from spinach. J Food Sci 73:C151–C157

    Article  PubMed  CAS  Google Scholar 

  63. Ju ZY, Howard LR (2003) Effects of solvent and temperature on pressurized liquid extraction of anthocyanins and total phenolics from dried red grape skin. J Agric Food Chem 51:5207–5213

    Article  PubMed  CAS  Google Scholar 

  64. Luque-Rodriguez JM, Luque de Castro MD, Perez-Juan P (2007) Dynamic superheated liquid extraction of anthocyanins and other phenolics from red grape skins of winemaking residues. Bioresour Technol 98:2705–2713

    Article  PubMed  CAS  Google Scholar 

  65. Alonso-Salces RM, Korta E, Barranco A et al (2001) Pressurized liquid extraction for the determination of polyphenols in apple. J Chromatogr A 933:37–43

    Article  PubMed  CAS  Google Scholar 

  66. Monrad JK, Howard LR, King JW et al (2010) Subcritical solvent extraction of procyanidins from dried red grape pomace. J Agric Food Chem 58:4014–4021

    Article  PubMed  CAS  Google Scholar 

  67. Chen XJ, Guo BL, Li SP et al (2007) Simultaneous determination of 15 flavonoids in Epimedium using pressurized liquid extraction and high-performance liquid chromatography. J Chromatogr A 1163:96–104

    Article  PubMed  CAS  Google Scholar 

  68. Herrero M, Ibanez E, Senorans FJ, Cifuentes A (2004) Pressurized liquid extracts from Spirulina platensis microalga: determination of their antioxidant activity and preliminary analysis by micellar electrokinetic chromatography. J Chromatogr A 1047:195–203

    PubMed  CAS  Google Scholar 

  69. Ibanez E, Herrero M, Martin-Alvarez PJ (2006) Accelerated solvent extraction: a new procedure to obtain functional ingredients from natural sources. In: Turner C (ed) Modern extraction techniques; ACS Symposium Series, vol 925. American Chemical Society, Washington DC, pp 65–78

    Google Scholar 

  70. Runnqvist H, Bak SA, Hansen M et al (2010) Determination of pharmaceuticals in environmental and biological matrices using pressurised liquid extraction—Are we developing sound extraction methods? J Chromatogr A 1217:2447–2470

    Article  PubMed  CAS  Google Scholar 

  71. Chen Y, Guoa A, Wang X et al (2008) Sample preparation. J Chromatog A 1184:191–219

    Article  CAS  Google Scholar 

  72. Garcia-Marino M, Rivas-Gonzalo JC, Ibanez E, Garcia-Moreno C (2006) Recovery of catechins and proanthocyanidins from winery by-products using subcritical water extraction. Anal Chim Acta 563:44–50

    Article  CAS  Google Scholar 

  73. Kim WJ, Kim J, Veriansyah B et al (2009) Extraction of bioactive components from Centella asiatica using subcritical water. J Sup Fluid 48:211–216

    Article  CAS  Google Scholar 

  74. Kim JW, Nagaoka T, Ishida Y et al (2009) Subcritical water extraction of nutraceutical compounds from citrus pomaces. Sep Sci Technol 44:2598–2608

    Article  CAS  Google Scholar 

  75. Rodriguez-Meizoso I, Marin FR, Herrero M et al (2006) Subcritical water extraction of nutraceuticals with antioxidant activity from oregano. Chemical and functional characterization. J Pharm Biome Anal 41:1560–1565

    Article  CAS  Google Scholar 

  76. Hartonen K, Parshintsev J, Sandberg K et al (2007) Isolation of flavonoids from aspen knotwood by pressurized hot water extraction and comparison with other extraction techniques. Talanta 74:32–38

    Article  PubMed  CAS  Google Scholar 

  77. Fabian C, Tran-Thi NY, Kasim NS et al (2010) Release of phenolic acids from defatted rice bran by subcritical water treatment. J Sci Food Agric 90:2576–2581

    Article  PubMed  CAS  Google Scholar 

  78. Ibanez E, Kubatova A, Senorans FJ et al (2003) Subcritical water extraction of antioxidant compounds from rosemary plants. J Agric Food Chem 51:375–382

    Article  PubMed  CAS  Google Scholar 

  79. Nováková L, Vlčková H (2009) A review of current trends and advances in modern bio-analytical methods: chromatography and sample preparation. Anal Chim Acta 656:8–35

    Article  PubMed  CAS  Google Scholar 

  80. Fritz JS, Dumont PJ, Schmidt LW (1995) Methods and materials for solid-phase extraction. J Chromatogr A 691:133–140

    Article  CAS  Google Scholar 

  81. Kalt W, MacKinnon S, McDonald J et al (2008) Phenolics of Vaccinium berries and other fruit crops. J Sci Food Agric 88:68–76

    Article  CAS  Google Scholar 

  82. Wallace TC, Giusti MM (2010) Extraction and normal-phase HPLC-fluorescence-electrospray MS characterization and quantification of procyanidins in cranberry extracts. J Food Sci 75:C690–C696

    Article  PubMed  CAS  Google Scholar 

  83. Budryn G, Nebesny E, Podsddek A et al (2009) Effect of different extraction methods on the recovery of chlorogenic acids, caffeine and Maillard reaction products in coffee beans. Eur Food Res Technol 228:913–922

    Article  CAS  Google Scholar 

  84. Zgorka G, Hajnos A (2003) The application of solid-phase extraction and reversed phase high-performance liquid chromatography for simultaneous isolation and determination of plant flavonoids and phenolic acids. Chromatographia 57:S77–S80

    Article  Google Scholar 

  85. Bendini A, Bonoli M, Cerretani L et al (2003) Liquid–liquid and solid-phase extractions of phenols from virgin olive oil and their separation by chromatographic and electrophoretic methods. J Chromatogr A 985:425–433

    Article  PubMed  CAS  Google Scholar 

  86. Poole CF (2003) New trends in solid-phase extraction. Trends Anal Chem 22:362–373

    Article  CAS  Google Scholar 

  87. Fontanals N, Marce RM, Borrull F (2005) New hydrophilic materials for solid-phase extraction. Trends Anal Chem 24:394–406

    Article  CAS  Google Scholar 

  88. Ferreres F, Tomas-Barberan FA, Soler C et al (1994) A simple extractive technique for honey flavonoid HPLC analysis. Apidologie 25:21–30

    Article  CAS  Google Scholar 

  89. Pérez-Magariño S, Ortega-Heras M, Cano-Mozo E (2008) Optimization of a solid-phase extraction method using copolymer sorbents for isolation of phenolic compounds in red wines and quantification by HPLC. J Agric Food Chem 56:11560–11570

    Article  PubMed  CAS  Google Scholar 

  90. Michalkiewicz A, Biesaga M, Pyrzynska K (2008) Solid-phase extraction procedure for determination of phenolic acids and some flavonols in honey. J Chromatogr A 1187:18–24

    Article  PubMed  CAS  Google Scholar 

  91. Jeffery DW, Mercurio MD, Herderich MJ et al (2008) Rapid isolation of red wine polymeric polyphenols by solid-phase extraction. J Agric Food Chem 56:2571–2580

    Article  PubMed  CAS  Google Scholar 

  92. Waksmundzka-Hajnos M, Wianowska D, Oniszczuk A et al (2008) Effect of sample-preparation methods on the quantification of selected flavonoids in plant materials by HPLC. Acta Chromatogr 20:475–488

    Article  CAS  Google Scholar 

  93. Xing J, Xie CF, Lou HX (2007) Recent applications of liquid chromatography–mass spectrometry in natural products bioanalysis. J Pharm Biomed Anal 44:368–378

    Article  PubMed  CAS  Google Scholar 

  94. Lu Y, Shen Q, Dai Z (2011) Multiwalled carbon nanotubes as sorbent for online solid-phase extraction of resveratrol in red wines prior to fused-core C18-based ultrahigh-performance liquid chromatography-tandem mass spectrometry quantification. J Agric Food Chem 59:70–77

    Article  PubMed  CAS  Google Scholar 

  95. Lam SH, Wang CY, Chen CK et al (2007) Chemical investigation of Phyllanthus reticulatus by HPLC-SPE-NMR and conventional methods. Phytochem Anal 18:251–255

    Article  PubMed  CAS  Google Scholar 

  96. Miliauskas G, van Beek TA, de Waard P et al (2006) Comparison of analytical and semi-preparative columns for high-performance liquid chromatography-solid-phase extraction-nuclear magnetic resonance. J Chromatogr A 1112:276–284

    Article  PubMed  CAS  Google Scholar 

  97. Tatsis EC, Boeren S, Exarchou V et al (2007) Identification of the major constituents of Hypericum perforatum by LC/SPE/NMR and/or LC/MS. Phytochemistry 68:383–393

    Article  PubMed  CAS  Google Scholar 

  98. Kumar A, Malika AK, Tewary DK (2009) A new method for determination of myricetin and quercetin using solid phase microextraction-high performance liquid chromatography–ultra violet/visible system in grapes, vegetables and red wine samples. Anal Chim Acta 631:177–181

    Article  PubMed  CAS  Google Scholar 

  99. Mitani K, Narimatsu S, Kataoka H (2003) Determination of daidzein and genistein in soybean foods by automated on-line in-tube solid-phase microextraction coupled to high-performance liquid chromatography. J Chromatogr A 986:169–177

    Article  PubMed  CAS  Google Scholar 

  100. Viñas P, Campillo N, Hernández-Pérez M (2008) A comparison of solid-phase microextraction and stir bar sorptive extraction coupled to liquid chromatography for the rapid analysis of resveratrol isomers in wines, musts and fruit juices. Anal Chim Acta 611:119–125

    Article  PubMed  CAS  Google Scholar 

  101. Ziakova A, Brandstecerova E, Blahova E (2003) Matrix solid-phase dispersion for the liquid chromatographic determination of phenolic acids in Melissa officinalis. J Chromatogr A 983:271–275

    Article  PubMed  CAS  Google Scholar 

  102. Barfi B, Hadjmohammadi MR, Kasaai MR (2009) Determination of daidzein and genistein in soybean and its waste by matrix solid-phase dispersion extraction and HPLC. Monatsh Chem 140:1143–1148

    Article  CAS  Google Scholar 

  103. Lahoutifard N, Dawes P, Wynne P. (2010) Micro extraction packed sorbent (MEPS): analysis of food and beverage. http://www.sisweb.com/lc/sge/meps.pdf Accessed 28 January 2011.

  104. Wirth HJ, Lahoutifard N, Wynne P (2010) Measuring fruit juice adulteration by changes in flavonoid content using MEPS and HPLC. http://www.cromlab.es/Artículos/SGE/MEPS/TP-0199-M_RevB.pdf. Accessed 28 January 2011

  105. Haginaka J (2009) Molecularly imprinted polymers as affinity-based separation media for sample preparation. J Sep Sci 32:1548–1565

    Article  PubMed  CAS  Google Scholar 

  106. Stalikas CD (2007) Extraction, separation, and detection methods for phenolic acids and flavonoids. J Sep Sci 30:3268–3295

    Article  PubMed  CAS  Google Scholar 

  107. Xie JC, Zhu L, Luo H et al (2001) Direct extraction of specific pharmacophoric flavonoids from gingko leaves using a molecularly imprinted polymer for quercetin. J Chromatogr A 934:1–11

    Article  PubMed  CAS  Google Scholar 

  108. Weiss R, Molinelli A, Lakusch M, Mizaikoff B (2002) Molecular imprinting and solid phase extraction of flavonoid compounds. Bioseparation 10:379–387

    Article  Google Scholar 

  109. Theodoridis G, Lasakova M, Skerikova V et al (2006) Molecular imprinting of natural flavonoid antioxidants: Application in solid-phase extraction for the sample pretreatment of natural products prior to HPLC analysis. J Sep Sci 29:2310–2321

    Article  PubMed  CAS  Google Scholar 

  110. Xia YQ, Guo TY, Song MD et al (2006) Selective separation of quercetin by molecular imprinting using chitosan beads as functional matrix. React Funct Polym 66:1734–1740

    Article  CAS  Google Scholar 

  111. Molinelli A, Weiss R, Mizaikoff B (2002) Advanced solid phase extraction using molecularly imprinted polymers for the determination of quercetin in red wine. J Agric Food Chem 50:1804–1808

    Article  PubMed  CAS  Google Scholar 

  112. O’Mahony J, Wei S, Molinelli A, Mizaikoff B (2006) Imprinted polymeric materials. Insight into the nature of prepolymerization complexes of quercetin imprinted polymers. Anal Chem 78:6187–6190

    Article  PubMed  CAS  Google Scholar 

  113. Zhang Y, Li SF, Wu XW et al (2007) Macroporous resin adsorption for purification of flavonoids in Houttuynia cordata Thunb. Chinese J Chem Eng 15:872–876

    Article  CAS  Google Scholar 

  114. Blahova E, Lehotay J, Skacani I (2004) The use of molecularly imprinted polymer for selective extraction of catechin. J Liq Chromatog Rel Techn 27:2715–2731

    Article  CAS  Google Scholar 

  115. Ding L, Li H, Tang F, Yao S (2006) Molecularly imprinted solid-phase extraction of epicatechin from tea beverage. Anal Let 39:2373–2385

    Article  CAS  Google Scholar 

  116. Haginaka J, Tabo H, Ichitani M et al (2007) Uniformly-sized, molecularly imprinted polymers for (−)-epigallocatechin gallate, -epicatechin gallate and -gallocatechin gallate by multi-step swelling and polymerization method. J Chromatogr A 1156:45–50

    Article  PubMed  CAS  Google Scholar 

  117. Cao H, Xiao JB, Xu M (2006) Evaluation of new selective molecularly imprinted polymers for the extraction of resveratrol from Polygonum cuspidatum. Macromol Res 14:324–330

    Article  CAS  Google Scholar 

  118. Zhang Z, Liu L, Li H, Yao SZ (2009) Synthesis, characterization and evaluation of uniformly sized core–shell imprinted microspheres for the separation trans-resveratrol from giant knotweed. Appl Surf Sci 255:9327–9332

    Article  CAS  Google Scholar 

  119. Ma SJ, Zhuang X, Wang H et al (2007) Preparation and characterization of trans-resveratrol imprinted polymers. Anal Let 40:321–333

    Article  CAS  Google Scholar 

  120. Sun BW, Li YZ, Chang WB (2001) Molecularly imprinted polymer using p-hydroxybenzoic acid, p-hydroxyphenylacetic acid and p-hydroxyphenylpropionic acid as templates. J Mol Recognit 14:388–392

    Article  PubMed  CAS  Google Scholar 

  121. Huang X, Kong L, Li X et al (2003) Molecular imprinting of nitrophenol and hydroxybenzoic acid isomers: effect of molecular structure and acidity on imprinting. J Mol Recognit 16:406–411

    Article  PubMed  CAS  Google Scholar 

  122. Liu ZS, Xu LY, Yan C, Gao RY (2004) Preparation and characterization of molecularly imprinted monolithic column based on 4-hydroxybenzoic acid for the molecular recognition in capillary electrochromatography. J Chromatogr A 523:243–250

    CAS  Google Scholar 

  123. Karasova G, Lehotay J, Sadecka J et al (2005) Selective extraction of derivates of p-hydroxybenzoic acid from plant material by using a molecularly imprinted polymer. J Sep Sci 28:2468–2476

    Article  PubMed  CAS  Google Scholar 

  124. Michailof C, Manesiotis P, Panayiotou C (2008) Synthesis of caffeic acid and p-hydroxybenzoic acid molecularly imprinted polymers and their application for the selective extraction of polyphenols from olive mill waste waters. J Chromatogr A 1182:25–33

    Article  PubMed  CAS  Google Scholar 

  125. Li H, Nie L, Yao S (2004) Adsorption isotherms and sites distribution of caffeic acid—imprinted polymer monolith from frontal analysis. Chromatographia 60:425–431

    Article  CAS  Google Scholar 

  126. Li H, Liu YG, Zhang Z et al (2005) Separation and purification of chlorogenic acid by molecularly imprinted polymer monolithic stationary phase. J Chromatogr A 1098:66–74

    Article  PubMed  CAS  Google Scholar 

  127. Pereira CG, Meireles MAA (2010) Supercritical fluid extraction of bioactive compounds: fundamentals, applications and economic perspectives. Food Bioprocess Technol 3:340–372

    Article  CAS  Google Scholar 

  128. Liu EH, Qi LW, Cao J et al (2008) Advances of modern chromatographic and electrophoretic methods in separation and analysis of flavonoids. Molecules 13:2521–2544

    Article  PubMed  CAS  Google Scholar 

  129. Zuo YB, Zeng AW, Yuan XG et al (2008) Extraction of soybean isoflavones from soybean meal with aqueous methanol modified supercritical carbon dioxide. J Food Eng 89:384–389

    Article  CAS  Google Scholar 

  130. Lin MC, Tsai MJ, Wen KC (1999) Supercritical fluid extraction of flavonoids from Scutellariae Radix. J Chromatogr A 830:387–395

    Article  CAS  Google Scholar 

  131. Araujo JMA, Silva MV, Chaves JBP (2007) Supercritical fluid extraction of daidzein and genistein isoflavones from soybean hypocotyl after hydrolysis with endogenous beta-glucosidases. Food Chem 105:266–272

    Article  CAS  Google Scholar 

  132. Cavero S, Garcia-Risco MR, Marin FR et al (2006) Supercritical fluid extraction of antioxidant compounds from oregano—Chemical and functional characterization via LC-MS and in vitro assays. J Superc Fluid 38:62–69

    Article  CAS  Google Scholar 

  133. Liza MS, Rahman RA, Mandana B et al (2010) Supercritical carbon dioxide extraction of bioactive flavonoid from Strobilanthes crispus (Pecah Kaca). Food Bioprod Proc 88:319–326

    Article  CAS  Google Scholar 

  134. Miao SF, Yu JP, Du Z et al (2010) Supercritical fluid extraction and micronization of ginkgo flavonoids from Ginkgo biloba leaves. Ind Eng Chem Res 49:5461–5466

    Article  CAS  Google Scholar 

  135. Ghafoor K, Park J, Choi YH (2010) Optimization of supercritical fluid extraction of bioactive compounds from grape (Vitis labrusca B.) peel by using response surface methodology. Inn Food Sci Emerg Technol 11:485–490

    Article  CAS  Google Scholar 

  136. Takeuchi TM, Rubano ML, Meireles MAA (2010) Characterization and functional properties of macela (Achyrocline satureioides) extracts obtained by supercritical fluid extraction using mixtures of CO2 plus ethanol. Food Bioprocess Technol 3:804–812

    Article  CAS  Google Scholar 

  137. Pinelo M, Ruiz-Rodriguez A, Sineiro J et al (2007) Supercritical fluid and solid-liquid extraction of phenolic antioxidants from grape pomace: a comparative study. Eur Food Res Technol 226:199–205

    Article  CAS  Google Scholar 

  138. Bergeron C, Gafner S, Clausen E et al (2005) Comparison of the chemical composition of extracts from Scutellaria lateriflora using accelerated solvent extraction and supercritical fluid extraction versus standard hot water or 70% ethanol extraction. J Agric Food Chem 53:3076–3080

    Article  PubMed  CAS  Google Scholar 

  139. Ligor M, Kornysova O, Maruska A et al (2008) Determination of flavonoids in tea and Rooibos extracts by TLC and HPLC. J Planar Chromatog-Modern TLC 21:355–360

    Article  CAS  Google Scholar 

  140. Scalia S, Giuffreda L, Pallado P (1999) Analytical and preparative supercritical fluid extraction of Chamomile flowers and its comparison with conventional methods. J Pharm Biomed Anal 21:549–558

    Article  PubMed  CAS  Google Scholar 

  141. Klejdus B, Lojkova L, Lapcik O et al (2005) Supercritical fluid extraction of isoflavones from biological samples with ultra-fast high-performance liquid chromatography/mass spectrometry. J Sep Sci 28:1334–1346

    Article  PubMed  CAS  Google Scholar 

  142. Nakornriab M, Sriseadka T, Wongpornchai S (2008) Quantification of carotenoid and flavonoid components in brans of some Thai black rice cultivars using supercritical fluid extraction and high-performance liquid chromatography-mass spectrometry. J Food Lipid 15:488–503

    Article  CAS  Google Scholar 

  143. Petsalo A, Jalonen J, Tolonen A (2006) Identification of flavonoids of Rhodiola rosea by liquid chromatography-tandem mass spectrometry. J Chromatogr A 1112:224–231

    Article  PubMed  CAS  Google Scholar 

  144. Vatai T, Škerget M, Knez Ž (2009) Extraction of phenolic compounds from elderberry and different grape marc varieties using organic solvents and/or supercritical carbon dioxide. J Food Eng 90:246–254

    Article  CAS  Google Scholar 

  145. Magalhães PJ, Vieira JS, Gonçalvez LM (2010) Isolation of phenolic compounds from hop extracts using polyvinylpolypyrrolidone: Characterization by high-performance liquid chromatography–diode array detection–electrospray tandem mass spectrometry. J Chromatogr A 1217:3258–3268

    Article  PubMed  CAS  Google Scholar 

  146. Rossler KH, Goodwin RS (1983) A general use of Amberlite XAD-2 resin for the purification of flavonoids from aqueous fractions. J Nat Prod 47:188

    Article  Google Scholar 

  147. Llorach R, Gil-Izquierdo A, Ferreres F, Tomas-Barberan FA (2003) HPLC-DAD-MS/MS ESI characterization of unusual highly glycosylated acylated flavonoids from cauliflower (Brassica oleracea L. var. botrytis) agroindustrial byproducts. J Agric Food Chem 51:3895–3899

    Article  PubMed  CAS  Google Scholar 

  148. Estevinho L, Pereira AP, Moreira L et al (2008) Antioxidant and antimicrobial effects of phenolic compounds extracts of Northeast Portugal honey. Food Chem Toxicol 46:3774–3779

    Article  PubMed  CAS  Google Scholar 

  149. Strack D, Mansell RL (1975) Polyamide column chromatography for resolution of complex mixtures of anthocyanins. J Chroma-togr A 109:325–331

    Article  CAS  Google Scholar 

  150. Li MX, Zhang R, Jia ZP et al (2009) Isolation and identification of hemostatic ingredients from Lamiophlomis rotata (Benth.) Kudo. Phytoter Res 23:816–822

    Article  CAS  Google Scholar 

  151. Zhang J, Hayat K, Zhang X et al (2010) Separation and purification of flavonoid from ginkgo extract by polyamide resin. Sep Sci Technol 45:2413–2419

    Article  CAS  Google Scholar 

  152. Thompson RS, Jacques D, Haslam E, Tanner RIB (1972) Plant procyanidins. Part I. Introduction: the isolation, structure and distribution in nature of plant procyanidins. J Chem Soc Perkin Trans 1:1387

    Article  Google Scholar 

  153. Lea AGH, Timberlake CF (1974) The phenolics of cider. I. Procyanidins. J Sci Food Agric 25:471–477

    Article  Google Scholar 

  154. Strumeyer DH, Malin MJ (1975) Condensed tannins in grain Sorghum: isolation, fractionation, and characterization. J Agric Food Chem 23:909–914

    Article  PubMed  CAS  Google Scholar 

  155. Asquith TN, Izuno CC, Butler LG (1983) Characterization of the condensed tannin (proanthocyanidin) from a group II sorghum. J Agric Food Chem 31:1299–1303

    Article  CAS  Google Scholar 

  156. Nonaka G, Morimoto S, Nishioka I (1983) Tannins and related compounds. Part 13. Isolation and structures of trimeric, tetrameric and pentameric proanthocyanidins from cinnamon. J Chem Soc Perkin Trans 1:2139

    Article  Google Scholar 

  157. Escribano-Bailón MT, Gutiérrez-Fernández Y, Rivas-Gonzalo JC, Santos-Buelga C (1992) Characterization of procyanidins of Vitis vinifera, variety Tinta del País, grape seeds. J Agric Food Chem 40:1794–1799

    Article  Google Scholar 

  158. Amarowicz R, Shahidi F (1996) A rapid chromatographic method for separation of individual catechins from green tea. Food Res Int 29:71–76

    Article  CAS  Google Scholar 

  159. Derdelinckx G, Jerumanis J (1984) Separation of malt and hop proanthocyandins on Fractogel TSK HW-40 (S). J Chromatogr 285:231–234

    Article  CAS  Google Scholar 

  160. Labarbe B, Cheynier V, Brossaud F et al (1999) Quantitative fractionation of grape proanthocyanidins according to their degree of polymerization. J Agric Food Chem 47:2719–2723

    Article  PubMed  CAS  Google Scholar 

  161. Yanagida A, Shoji T, Shibusawa Y (2003) Separation of proanthocyanidins by degree of polymerization by means of size-exclusion chromatography and related techniques. J Biochem Biophys Methods 56:311–322

    Article  PubMed  CAS  Google Scholar 

  162. Mateus N, Pascual-Teresa SDE, Rivas-Gonzalo S et al (2002) Structural diversity of anthocyanin-derived pigments in port wines. Food Chem 76:335–342

    Article  CAS  Google Scholar 

  163. Alcalde-Eon C, Escribano-Bailón MT, Santos-Buelga C, Rivas-Gonzalo JC (2004) Separation of pyranoanthocyanins from red wine by column chromatography. Anal Chim Acta 513:305–318

    Article  CAS  Google Scholar 

  164. Jordheim M, Fossen T, Andersen OM (2006) Preparative isolation and NMR characterization of carboxypyranoanthocyanins. J Agric Food Chem 54:3572–3577

    Article  PubMed  CAS  Google Scholar 

  165. Li R, Zhao R, Zhang H et al (2010) A novel medium poly(vinyl acetate-triallyl isocyanurate-divinylbenzene) coupled with oligo-b-cyclodextrin for the isolation of puerarin from pueraria flavones. Chromatographia 72:47–54

    Article  CAS  Google Scholar 

  166. Berthod A, Berthod L, Armstrong DW (2005) Selectivity of a native β-cyclodextrin column in the separation of catechin. J Liq Chromatog Rel Techn 28:1669–1678

    Article  CAS  Google Scholar 

  167. Xu J, Zhang G, Tan T, Janson JC (2005) One-step purification of epigallocatechin gallate from crude green tea extracts by isocratic hydrogen bond adsorption chromatography on β-cyclodextrin substituted agarose gel media. J Chromatogr B 824:323–326

    Article  CAS  Google Scholar 

  168. Si-Ahmed K, Tazerouti F, Badjah-Hadj-Ahmed AY et al (2010) Optical isomer separation of flavanones and flavanone glycosides by nano-liquid chromatography using a phenyl-carbamate-propyl-b-cyclodextrin chiral stationary phase. J Chromatogr A 1217:1175–1182

    Article  PubMed  CAS  Google Scholar 

  169. Dueñas M, Mingo-Chornet H, Perez-Alonso JJ et al (2008) Preparation of quercetin glucuronides and characterization by HPLC-DAD-ESI/MS. Eur Food Res Technol 227:1069–1076

    Article  CAS  Google Scholar 

  170. Gonzalez-Manzano S, Gonzalez-Paramas AM, Santos-Buelga C, Dueñas M (2009) Preparation and characterization of catechin sulfates, glucuronides, and methylethers with metabolic interest. J Agric Food Chem 57:1231–1238

    Article  PubMed  CAS  Google Scholar 

  171. Valls J, Millan S, Marti MP et al (2009) Advanced separation methods of food anthocyanins, isoflavones and flavanols. J Chromatogr A 1216:7143–7172

    Article  PubMed  CAS  Google Scholar 

  172. Liu X, Tang YH, Wei SL et al (2010) Isolation and purification of phenolic compounds from Magnolia officinalis by preparative high performance liquid chromatography. J Liq Chromat Rel Techn 33:431–440

    Article  CAS  Google Scholar 

  173. Lv J, Liang H, Yuan QP et al (2010) Preparative purification of the major flavonoid glabridin from licorice roots by solid phase extraction and preparative high performance liquid chromatography. Sep Sci Technol 45:1104–1111

    Article  CAS  Google Scholar 

  174. Han S, Kim HM, Lee JM et al (2010) Isolation and identification of polymethoxyflavones from the hybrid Citrus, Hallabong. J Agric Food Chem 58:9488–9491

    Article  PubMed  CAS  Google Scholar 

  175. Lazarus SA, Adamson GE, Hammerstone JF, Schmitz HH (1999) High performance liquid chromatography/mass spectrometry analysis of proanthocyanidins in foods and beverages. J Agric Food Chem 47:3693–3701

    Article  PubMed  CAS  Google Scholar 

  176. Rigaud J, Escribano-Bailon MT, Prieur C et al (1993) Normal-phase high-performance liquid chromatographic separation of procyanidins from cacao beans and grape seeds. J Chromatogr A 654:255

    Article  CAS  Google Scholar 

  177. Hammerstone JF, Lazarus SL, Mitchell AE et al (1999) Identification of procyanidins in cocoa (Theobroma cacao) and chocolate using high-performance liquid chromatography/mass spectrometry. J Agric Food Chem 47:490–496

    Article  PubMed  CAS  Google Scholar 

  178. Waterhouse AL, Ignelzi S, Shirley JR (2000) A comparison of methods for quantifying oligomeric proanthocyanidins from grape seed extracts. Am J Enol Vitic 51:383–389

    CAS  Google Scholar 

  179. Lazarus SL, Kelm MA, Hammerstone JF et al (2003) Analysis and purification of proanthocyanidin oligomers. In: Santos-Buelga C, Williamson G (eds) Methods in polyphenol analysis. The Royal Society of Chemistry, Cambridge, pp 266–283

    Google Scholar 

  180. Hellstrom JK, Mattila PH (2008) HPLC determination of extractable and unextractable proanthocyanidins in plant materials. J Agric Food Chem 56:7617–7624

    Article  PubMed  CAS  Google Scholar 

  181. Sutherland IA, Fisher D (2009) Role of counter-current chromatography in the modernisation of Chinese herbal medicines. J Chromatogr A 1216:740–753

    Article  PubMed  CAS  Google Scholar 

  182. Ito Y (1980) New horizontal flow-through coil planet centrifuge for counter-current chromatography. I Principle of design and analysis of acceleration. J Chromatogr 188:33–42

    Article  CAS  Google Scholar 

  183. Ito Y (1980) New horizontal flow-through coil planet centrifuge for counter-current chromatography. II. The apparatus and its partition capabilities. J Chromatogr 188:43–60

    Article  CAS  Google Scholar 

  184. Pauli GF, Pro SM, Friesen JB (2008) Countercurrent separation of natural products. J Nat Prod 71:1489–1508

    Article  PubMed  CAS  Google Scholar 

  185. Tsao R, Deng Z (2004) Separation procedures for naturally occurring antioxidant phytochemicals. J Chromatogr B 812:85–99

    CAS  Google Scholar 

  186. Guzlek H, Wood PL, Janaway L (2009) Performance comparison using the GUESS mixture to evaluate counter-current chromatography instruments. J Chromatogr A 1216:4181–4418

    Article  PubMed  CAS  Google Scholar 

  187. Renault JH, Thepenier P, Zeches-Hanrot M et al (1997) Preparative separation of anthocyanins by gradient elution centrifugal partition chromatography. J Chromatogr A 763:345–352

    Article  CAS  Google Scholar 

  188. Degenhardt A, Hofmann S, Knapp HP et al (2000) Preparative isolation of anthocyanins by high-speed countercurrent chromatography and application of the color activity concept to red wine. J Agric Food Chem 48:5812–5818

    Article  PubMed  CAS  Google Scholar 

  189. Degenhardt A, Knapp H, Winterhalter P (2000) Rapid isolation of malvidin 3-glucoside from red wine by high speed countercurrent chromatography (HSCCC). Vitis 39:43–44

    CAS  Google Scholar 

  190. Degenhardt A, Knapp H, Winterhalter P (2000) Separation and purification of anthocyanins by high-speed countercurrent chromatography and screening for antioxidant activity. J Agric Food Chem 48:338–343

    Article  PubMed  CAS  Google Scholar 

  191. Schwarz M, Hillebrand S, Habben S et al (2003) Application of high-speed countercurrent chromatography to the large-scale isolation of anthocyanins. Biochem Eng J 14:179–189

    Article  CAS  Google Scholar 

  192. Du Q, Jerz G, Winterhalter P (2004) Isolation of two anthocyanin sambubiosides from bilberry (Vaccinium myrtillus) by high-speed counter-current chromatography. J Chromatogr A 1045:59–63

    Article  PubMed  CAS  Google Scholar 

  193. Du Q, Zheng J, Xu Y (2008) Composition of anthocyanins in mulberry and their antioxidant activity. J Food Compos Anal 21:390–395

    Article  CAS  Google Scholar 

  194. Vidal S, Hayasaka Y, Meudec E et al (2004) Fractionation of grape anthocyanin classes using multilayer coil countercurrent chromatography with step gradient elution. J Agric Food Chem 52:713–719

    Article  PubMed  CAS  Google Scholar 

  195. Salas E, Dueñas M, Schwarz M et al (2005) Characterization of pigments from different high speed countercurrent chromatography wine fractions. J Agric Food Chem 53:4536–4546

    Article  PubMed  CAS  Google Scholar 

  196. Rentzsch M, Quast P, Hillebrand S et al (2007) Isolation and identification of 5-carboxy-pyranoanthocyanins in beverages from cherry (Prunus cerasus L.). Innovative Food Sci Emerg Technol 8:333–338

    Article  CAS  Google Scholar 

  197. Delaunay JC, Castagnino C, Cheze C et al (2002) Preparative isolation of polyphenolic compounds from Vitis vinifera by centrifugal partition chromatography. J Chromatogr A 964:123–128

    Article  PubMed  CAS  Google Scholar 

  198. Kumar NS, Rajapaksha M (2005) Separation of catechin constituents from five tea cultivars using high-speed counter-current chromatography. J Chromatogr A 1083:223–228

    Article  PubMed  CAS  Google Scholar 

  199. Kumar N, Maduwantha WMA, Wijekoon B et al (2009) Separation of proanthocyanidins isolated from tea leaves using high-speed counter-current chromatography. J Chromatogr A 1216:4295–4302

    Article  PubMed  CAS  Google Scholar 

  200. Yanagida A, Shoji A, Shibusawa Y et al (2006) Analytical separation of tea catechins and food-related polyphenols by high-speed counter-current chromatography. J Chromatogr A 1112:195–201

    Article  PubMed  CAS  Google Scholar 

  201. Koehler N, Wray V, Winterhalter P (2008) Preparative isolation of procyanidins from grape seed extracts by high-speed counter-current chromatography. J Chromatogr A 1177:114–125

    Article  CAS  Google Scholar 

  202. Shibusawa Y, Yanagida A, Ichihashi K et al (2000) High-speed counter-current chromatography of apple procyanidins. J Chromatogr A 886:65–75

    Article  PubMed  CAS  Google Scholar 

  203. Sun A, Sun Q, Liu R (2007) Preparative isolation and purification of flavone compounds from Sophora japonica L. by high-speed counter-current chromatography combined with macroporous resin column separation. J Sep Sci 30:1013–1019

    Article  PubMed  CAS  Google Scholar 

  204. Wang X, Cheng C, Sun Q et al (2005) Isolation and purification of four flavonoid constituents from the flowers of Paeonia suffruticosa by high-speed counter-current chromatography. J Chromatogr A 1075:127–132

    Article  PubMed  CAS  Google Scholar 

  205. Chen LJ, Games DE, Jones J (2003) Isolation and identification of four flavonoid constituents from the seeds of Oroxylum indicum by high-speed counter- current chromatography. J Chromatogr A 988:95–105

    Article  PubMed  CAS  Google Scholar 

  206. Zhang Q, Chen LJ, Ye HY et al (2007) Isolation and purification of ginkgo flavonol glycosides from Ginkgo biloba leaves by high-speed counter-current chromatography. J Sep Sci 30:2153–2158

    Article  PubMed  CAS  Google Scholar 

  207. Peng J, Fan G, Wu Y (2006) Preparative isolation of four new and two known flavonoids from the leaf of Patrinia villosa Juss. by counter-current chromatography and evaluation of their anticancer activities in vitro. J Chromatogr A 1115:103–111

    Article  PubMed  CAS  Google Scholar 

  208. Peng JY, Xu LN, Xu H et al (2007) Separation of two new prenylated dihydroflavonoids from Dolichos tenuicaulis (Baker) Craib by high-speed counter-current chromatography. Chin J Anal Chem 35:1444–1449

    Article  CAS  Google Scholar 

  209. Xu K, Lu H, Qu B et al (2010) High-speed counter-current chromatography preparative separation and purification of phloretin from apple tree bark. Sep Purif Technol 72:406–409

    Article  CAS  Google Scholar 

  210. Du Q, Li Z, Ito Y (2001) Preparative separation of isoflavone components in soybeans using high-speed counter-current chromatography. J Chromatogr A 923:271–274

    Article  PubMed  CAS  Google Scholar 

  211. Ma X, Tu P, Chen Y (2003) Preparative isolation and purification of two isoflavones from Astragalus membranaceus Bge. var. mongholicus (Bge.) Hsiao by high-speed counter-current chromatography. J Chromatogr A 992:193–197

    Article  PubMed  CAS  Google Scholar 

  212. Stuertz M, Lander V, Schmid W et al (2006) Preparative isolation of isoflavones from soy and red clover. Mol Nutr Food Res 50:356–361

    Article  CAS  Google Scholar 

  213. Yang F, Ma Y, Ito Y (2001) Separation and purification of isoflavones from a crude soybean extract by high-speed counter-current chromatography. J Chromatogr A 928:163–170

    Article  PubMed  CAS  Google Scholar 

  214. Cao X, Tian Y, Zhang T et al (1999) Separation and purification of isoflavones from Pueraria lobata by high-speed counter-current chromatography. J Chromatogr A 855:709–713

    Article  PubMed  CAS  Google Scholar 

  215. Chen L, Han Y, Yang F et al (2001) High-speed counter-current chromatography separation and purification of resveratrol and piceid from Polygonum cuspidatum. J Chromatogr A 907:343–346

    Article  PubMed  CAS  Google Scholar 

  216. Yang F, Zhang T, Ito Y (2001) Large-scale separation of resveratrol, anthraglycoside A and anthraglycoside B from Polygonum cuspidatum Sieb. et Zucc by high-speed counter-current chromatography. J Chromatogr A 919:443–448

    Article  PubMed  CAS  Google Scholar 

  217. Liu Z, Wang J, Shen P et al (2006) Microwave-assisted extraction and high-speed counter-current chromatography purification of ferulic acid from Radix Angelicae sinensis. Sep Purif Technol 52:18–21

    Article  CAS  Google Scholar 

  218. Lu HT, Jiang Y, Chen F (2004) Application of preparative high-speed counter-current chromatography for separation of chlorogenic acid from Flos lonicerae. J Chromatogr A 1026:185–190

    Article  PubMed  CAS  Google Scholar 

  219. de Beer D, Jerz G, Joubert E (2009) Isolation of isomangiferin from honeybush (Cyclopia subternata) using high-speed counter-current chromatography and high-performance liquid chromatography. J Chromatogr A 1216:4282–4289

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Celestino Santos-Buelga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Santos-Buelga, C., Gonzalez-Manzano, S., Dueñas, M., Gonzalez-Paramas, A.M. (2012). Extraction and Isolation of Phenolic Compounds. In: Sarker, S., Nahar, L. (eds) Natural Products Isolation. Methods in Molecular Biology, vol 864. Humana Press. https://doi.org/10.1007/978-1-61779-624-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-624-1_17

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-623-4

  • Online ISBN: 978-1-61779-624-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics